Suzaku spectroscopy of the neutron star transient 4U 1608-52 during its outburst decay.

Armas Padilla, M.; Ueda, Y.; Hori, T.; Shidatsu, M.; Muñoz-Darias, T.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 467, Issue 1, p.290-297

Advertised on:
5
2017
Number of authors
5
IAC number of authors
2
Citations
18
Refereed citations
18
Description
We test the proposed three-component spectral model for neutron star low-mass X-ray binaries using broad-band X-ray data. We have analysed four X-ray spectra (0.8-30 keV) obtained with Suzaku during the 2010 outburst of 4U 1608-52, which have allowed us to perform a comprehensive spectral study covering all the classical spectral states. We use a thermally Comptonized continuum component to account for the hard emission, as well as two thermal components to constrain the accretion disc and neutron star surface contributions. We find that the proposed combination of multicolour disc, single-temperature blackbody and Comptonization components successfully reproduces the data from soft to hard states. In the soft state, our study supports the neutron star surface (or boundary layer) as the dominant source for the Comptonization seed photons yielding the observed weak hard emission, while in the hard state both solutions, either the disc or the neutron star surface, are equally favoured. The obtained spectral parameters as well as the spectral/timing correlations are comparable to those observed in accreting black holes, which support the idea that black hole and neutron star low-mass X-ray binaries undergo a similar state evolution during their accretion episodes.
Related projects
Black hole in outburst
Black holes, neutron stars, white dwarfs and their local environment

Accreting black-holes and neutron stars in X-ray binaries provide an ideal laboratory for exploring the physics of compact objects, yielding not only confirmation of the existence of stellar mass black holes via dynamical mass measurements, but also the best opportunity for probing high-gravity environments and the physics of accretion; the most

Montserrat
Armas Padilla