The very faint hard state of the persistent neutron star X-ray binary SLX 1737-282 near the Galactic Centre

Armas Padilla, M.; Ponti, G.; De Marco, B.; Muñoz-Darias, T.; Haberl, F.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 473, Issue 3, p.3789-3795

Advertised on:
1
2018
Description
We report on a detailed study of the spectral and temporal properties of the neutron star low-mass X-ray binary SLX 1737-282, which is located only ∼1° away from Sgr A*. The system is expected to have a short orbital period, even within the ultracompact regime, given its persistent nature at low X-ray luminosities and the long duration thermonuclear burst that it has displayed. We have analysed a Suzaku (18 ks) observation and an XMM-Newton (39 ks) observation taken 7 yr apart. We infer (0.5-10 keV) X-ray luminosities in the range of 3-6 × 1035ergs-1, in agreement with previous findings. The spectra are well described by a relatively cool (kTbb = 0.5 keV) blackbody component plus a Comptonized emission component with Γ ∼ 1.5-1.7. These values are consistent with the source being in a faint hard state, as confirmed by the ∼20 per cent fractional root-mean-square amplitude of the fast variability (0.1-7 Hz) inferred from the XMM-Newton data. The electron temperature of the corona is ≳7 keV for the Suzaku observation, but it is measured to be as low as ∼2 keV in the XMM-Newton data at higher flux. The latter is significantly lower than expected for systems in the hard state. We searched for X-ray pulsations and imposed an upper limit to their semi-amplitude of 2 per cent (0.001-7 Hz). Finally, we investigated the origin of the low-frequency variability emission present in the XMM-Newton data and ruled out an absorption dip origin. This constraint the orbital inclination of the system to ≲65° unless the orbital period is longer than 11 h (i.e. the length of the XMM-Newton observation).
Related projects
Black hole in outburst
Nature and Evolution of X-Ray Binaries

Accreting black-holes and neutron stars in X-ray binaries provide an ideal laboratory for exploring the physics of compact objects, yielding not only confirmation of the existence of stellar mass black holes via dynamical mass measurements, but also the best opportunity for probing high-gravity environments and the physics of accretion; the most

Teodoro
Muñoz Darias