12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791

Szigeti, L.; Mészáros, Szabolcs; Smith, Verne V.; Cunha, Katia; Lagarde, Nadège; Charbonnel, Corinne; García-Hernández, D. A.; Shetrone, Matthew; Pinsonneault, Marc; Allende Prieto, C.; Fernández-Trincado, J. G.; Kovács, József; Villanova, Sandro
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 474, Issue 4, p.4810-4817

Advertised on:
3
2018
Description
Carbon isotope ratios, along with carbon and nitrogen abundances, are derived in a sample of 11 red-giant members of one of the most metal-rich clusters in the Milky Way, NGC 6791. The selected red-giants have a mean metallicity and standard deviation of [Fe/H] = +0.39 ± 0.06 (Cunha et al. 2015). We used high-resolution H-band spectra obtained by the SDSS-IV Apache Point Observatory Galactic Evolution Experiment. The advantage of using high-resolution spectra in the H band is that lines of CO are well represented and their line profiles are sensitive to the variation of 12C/13C. Values of the 12C/13C ratio were obtained from a spectrum synthesis analysis. The derived 12C/13C ratios varied between 6.3 and 10.6 in NGC 6791, in agreement with the final isotopic ratios from thermohaline-induced mixing models. The ratios derived here are combined with those obtained for more metal poor red-giants from the literature to examine the correlation between 12C/13C, mass, metallicity, and evolutionary status.
Related projects
Project Image
Nucleosynthesis and molecular processes in the late stages of Stellar Evolution

Low- to intermediate-mass (M < 8 solar masses, Ms) stars represent the majority of stars in the Cosmos. They finish their lives on the Asymptotic Giant Branch (AGB) - just before they form planetary nebulae (PNe) - where they experience complex nucleosynthetic and molecular processes. AGB stars are important contributors to the enrichment of the

Domingo Aníbal
García Hernández
spectrum of mercury lamp
Chemical Abundances in Stars

Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to

Carlos
Allende Prieto