2MASS J154043.42-510135.7: a new addition to the 5 pc population

Pérez Garrido, A.; Lodieu, N.; Béjar, V. J. S.; Ruiz, M. T.; Gauza, B.; Rebolo, R.; Zapatero Osorio, M. R.
Bibliographical reference

Astronomy & Astrophysics, Volume 567, id.A6, 8 pp.

Advertised on:
7
2014
Description
Aims: The aim of the project is to find the stars closest to the Sun and to contribute to the completion of the stellar and substellar census of the solar neighbourhood. Methods: We identified a new late-M dwarf within 5 pc, looking for high proper motion sources in the 2MASS-WISE cross-match. We collected astrometric and photometric data available from public large-scale surveys. We complemented this information with low-resolution (R ~ 500) optical (600-1000 nm) and near-infrared (900-2500 nm) spectroscopy with instrumentation on the European Southern Observatory New Technology Telescope to confirm the nature of our candidate. We also present a high-quality medium-resolution VLT/X-shooter spectrum covering the 400 to 2500 nm wavelength range. Results: We classify this new neighbour as an M7.0 ± 0.5 dwarf using spectral templates from the Sloan Digital Sky Survey and spectral indices. Lithium absorption at 670.8 nm is not detected in the X-shooter spectrum, indicating that the M7 dwarf is older than 600 Myr and more massive than 0.06 M⊙. We also derive a trigonometric distance of 4.4+0.5-0.4 pc, in agreement with the spectroscopic distance estimate, making 2MASS J154043.42-510135.7 (2M1540) the nearest M7 dwarf to the Sun. This trigonometric distance is somewhat closer than the ~6 pc distance reported by the ALLWISE team, who independently identified this object recently. This discovery represents an increase by 25% in the number of M7-M8 dwarfs already known at distances closer than 8 pc from our Sun. We derive a density of ρ = 1.9 ± 0.9 × 10-3 pc-3 for M7 dwarfs in the 8 pc volume, a value similar to those quoted in the literature. Conclusions: This new ultracool dwarf is among the 50 closest systems to the Sun, demonstrating that our current knowledge of the stellar census within the 5 pc sample remains incomplete. 2M1540 represents a unique opportunity to search for extrasolar planets around ultracool dwarfs due to its proximity and brightness. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile.
Related projects
Discovery of a system of super-Earths orbiting the star HD 176986 with about 5.7 and 9.2 Earth masses.
Very Low Mass Stars, Brown Dwarfs and Planets

Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so

Rafael
Rebolo López
Projects' name image
Exoplanets and Astrobiology

The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable

Enric
Pallé Bago