Exoplanets and Astrobiology


    The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable information about its physical properties, but also allowing to constrain the properties of the Solar system's planets within a more global context. The field is approaching to the important discovery of the first potentially habitable planets and encouraging more detailed studies of them. With the launching of upcoming related satellites like JWST, CHEOPS, TESS, ARIEL and PLATO, the exoplanets field faces a bright future.

    It is for this reason that this field is aid of, and at the same time promotes, the development of increasingly sensitive and stable instrumentation for both, ground-based telescopes and space missions. Our group is particularly prepared for these two fronts. On the one hand, during the last years we have developed observational and reduction techniques of exoplanet transits data for the ORM telescopes, ours being one of the most productive groups in the exploitation of GTC. On the other hand, all ESA space missions (present and future) related to exoplanets have one or more components of the project as CoIs. Within the frame of this project, we intend that IAC researchers maintain an advantageous position regarding the operation of OSIRIS and CanariCam, first light

    GTC's instruments, and participate in the construction, commissioning and operation of new instruments such as the high resolution optical spectrograph HORUS at GTC. The exploitation of the photometry and spectroscopy of transits with LIRIS at WHT is also one of our principal interests, especially in preparation for the installation in 2015 of EMIR on the GTC .

    To summarize, the project "Exoplanets and Astrobiology" will focus on these four action lines:

    1) The characterization of atmospheric and physical properties of exoplanets (GTC, WHT, ARIEL, HARPSN, CARMENES, ESPRESSO, etc. ..)

    2) The search and confirmation of exoplanets by transits techniques (CoRoT, Kepler, K2, CHEOPS, XO, LCOGT, W FC, DISH, etc. ..)

    3) The search and confirmation of exoplanet by radial velocity techniques (HARPSN, HORUS, LCOGT, SONG, CARMENES)

    4) Astrobiology

    Principal investigator
    1. Detection of He in the atmosphere of an exoplanet from the ground, published in Science
    2. Detection of a super-earth around Barnard star, published in Nature
    3. Detection of the first TESS planets, with several papers of high relevance
    4. Discovery of Na and Halpha features in the spectrum of KELT-20b with TNG
    5. Publication of the Handbook of Exoplanets, the most extensive work of reference in the field of exoplanets. The Handbook was edited by members of our group, and includes contributions by about 300 experts worldwide, including 12 members of IAC.

    Publications related

    Talks related

    No related talks were found.

    Conferences related

    No related conferences were found.

    Related news

    • An international team, including researchers from the Instituto de Astrofísica de Canarias (IAC), has discovered an extrasolar planet with half the mass of the Earth that takes approximately eight hours to orbit its parent star, a red dwarf just under 31 light-years from Earth. Called GJ 367 b, it is one of the lightest among the nearly 5.000 exoplanets known today. With a diameter of just over 9000 kilometres, this sub-Earth is slightly larger than Mars. The discovery not only demonstrates that it is possible to precisely determine the event the smallest, least massive exoplanets, but also

      Advertised on
    • An international team of scientists, in which researchers from the Instituto de Astrofísica de Canarias (IAC) participate together with other institutions from Spain, Italy, Germany, Belgium, UK, and Mexico, has been able to measure the masses of the giant planets of the V1298 Tau system, just 20 million year old. Masses for such young giant planets had not been obtained previously, and this is the first evidence that these objects have already reached their final size at very early stages of their evolution. For this study they have used radial velocity measurements from the HARPS-N

      Advertised on
    • Astronomers from the Agrupación Astrónomica de Sabadell together with the Telescopic Operations Technicians of the Instituto de Astrofísica de Canarias, Marta Puig Subirà and Miguel Rodríguez Alarcón, have detected the transit of the exoplanet WASP-156b, catalogued as a high priority objective by the Exoclock project. The depth of the detected transit was only 6 millimagnitudes and will contribute to improve the ephemerides available for the ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) mission of the European Space Agency. Exoclock project: Kokori, A., Tsiaras, A

      Advertised on