The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2

Ata, M.; Baumgarten, Falk; Bautista, Julian; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R.; Blazek, Jonathan A.; Bolton, Adam S.; Brinkmann, Jonathan; Brownstein, Joel R. et al.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 473, Issue 4, p.4773-4794

Advertised on:
2
2018
Description
We present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147 000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically averaged clustering in both configuration and Fourier space. Our observational data set and the 1400 simulated realizations of the data set allow us to detect a preference for BAO that is greater than 2.8σ. We determine the spherically averaged BAO distance to z = 1.52 to 3.8 per cent precision: DV(z = 1.52) = 3843 ± 147(rd/rd, fid)Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat ΛCDM best-fitting cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Using these BAO data alone and marginalizing over the length of the standard ruler, we find ΩΛ > 0 at 6.6σ significance when testing a ΛCDM model with free curvature.
Related projects
 The Invisible Scaffolding of Space
Cosmology with Large Scale Structure Probes

The Cosmic Microwave Background (CMB) contains the statistical information about the early seeds of the structure formation in our Universe. Its natural counterpart in the local universe is the distribution of galaxies that arises as a result of gravitational growth of those primordial and small density fluctuations. The characterization of the

FRANCISCO SHU
KITAURA JOYANES