Grants related:
General
The Cosmic Microwave Background (CMB) contains the statistical information about the early seeds of the structure formation in our Universe. Its natural counterpart in the local universe is the distribution of galaxies that arises as a result of gravitational growth of those primordial and small density fluctuations. The characterization of the distribution of inhomogeneities at large-scale in the local Universe provides a powerful tool, complementary to the CMB, to determine the origin and the energy content of the Universe, the expansion rate of the Universe during the cosmic history, and the detailed process of formation of the large-scale structures (LSS). The study of the LSS in the coming years will attempt to address the following open questions in cosmology:
What is the dark matter, and which is its detailed contribution to the energy content of the Universe?
What is the dark energy, and how it affects the dynamics of the Universe?
What is the connection between large scale structure and galaxy formation?
Do fundamental constants vary along the history of the Universe?
Is there evidence for primordial non-Gaussianities giving information on the details of the inflationary expansion epoch of the Universe?
In order to contribute to the possible answer to those questions, in this project we will use several large scale structure probes:
The distribution and large-scale clustering of the galaxies, and its evolution with time. The matter power spectrum (P(k)) and the two-point correlation function (ξ(r)) contain certain geometric features associated to some characteristic length-scales in the Universe, as the horizon at matter-radiation equality, or the acoustic horizon at last scattering. In particular, the latter determines the Baryon Acoustic Oscillation (BAO) scale.
The higher order statistics: the three-point statistics characterizes the deviation from Gaussinity and therefore the structure formation through gravitational instability, the galaxy bias, and the primordial non-Gaussianities.
The distribution of the cosmic voids in the Universe. Both the statistics of big voids, as well as the characterization of the void expansion, provides a complementary tool to determine the matter density and the equation of state of the dark energy. Cosmic voids contain information of the higher order statistics of galaxies and can be used to further constrain the BAO scale.
The cosmic web can be used to characterize the formation of structures and relate the large scale structure with galaxy formation processes.
The distribution and abundance of galaxy clusters, as well as the evolution with time. Among other parameters, the cluster mass function depends both on the matter density as well as in the amplitude of the power spectrum. The time evolution of the mass function n(M,z) is also govern by the growth of structures in the Universe, thus being also sensitive to the equation of state of the dark energy.
Members
Results
- eBOSS: cosmological analysis from the quasar sample. Marcos Pellejero Ibañez and F. S. Kitaura participated in the construction of the likelihood and the cosmological parameter estimation (including as coauthors Kitaura & Pellejero Ibañez: 2018MNRAS.473.4773A).
- EUCLID: comparison project of mock galaxy catalogue generating codes showing the accuracy and speed of the PATCHY code (including as coauthors Balaguera-Antolínez, Kitaura & Pellejero Ibañez:https://arxiv.org/abs/1806.09497, https://arxiv.org/abs/1806.09477, https://arxiv.org/abs/1806.09499)
- Development of an accurate Bias mapping method for large scale structure analysis (Balaguera-Antolínez, Kitaura, Pellejero Ibañez et al 2018:https://arxiv.org/abs/1806.05870)
- Presentation of the UNITSIM project to provide simulations for the theoretical model comparison for DESI and EUCLID (including as coauthors Kitaura & Pellejero Ibañez:http://www.unitsims.org/ https://arxiv.org/abs/1811.02111)
- Presentation of BARCODE (Bos, Kitaura & Weygaert 2018: https://arxiv.org/abs/1810.05189, http://adsabs.harvard.edu/abs/2018ascl.soft10002B)
Scientific activity
Related publications
-
Fitting of supernovae without dark energy
With data from Pantheon, we have at our disposal a sample of more than a 1000 supernovae Ia covering a wide range of redshifts with good precision. Here, we make fits to the corresponding Hubble-Lemaître diagram with various cosmological models, with intergalactic extinction, evolution of the luminosity of supernovae, and redshift components due to
López-Corredoira, M. et al.Advertised on:
02022 -
Hubble tensions: a historical statistical analysis
Statistical analyses of measurements of the Hubble-Lemaître constant H0 (163 measurements between 1976 and 2019) show that the statistical error bars associated with the observed parameter measurements have been underestimated - or the systematic errors were not properly taken into account - in at least 15-20 per cent of the measurements. The fact
López-Corredoira, MartínAdvertised on:
122022 -
Virial theorem in clusters of galaxies with MOND
A specific modification of Newtonian dynamics known as MOND has been shown to reproduce the dynamics of most astrophysical systems at different scales without invoking non-baryonic dark matter (DM). There is, however, a long-standing unsolved problem when MOND is applied to rich clusters of galaxies in the form of a deficit (by a factor around two)
López-Corredoira, M. et al.Advertised on:
122022 -
Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument
The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond
Advertised on:
112022 -
Relativistic angular redshift fluctuations embedded in large scale varying gravitational potentials
We compute the linear order, general relativistic corrections to angular redshift fluctuations (ARF), a new cosmological observable built upon density-weighted two-dimensional (2D) maps of galaxy redshifts. We start with an existing approach for galaxy/source counts developed in the Newtonian gauge, and generalize it to ARF, modifying for this
Lima-Hernández, Adal et al.Advertised on:
92022 -
Model selection using baryon acoustic oscillations in the final SDSS-IV release
The baryon acoustic oscillation (BAO) peak, seen in the cosmic matter distribution at redshifts up to ∼3.5, reflects the continued expansion of the sonic horizon first identified in temperature anisotropies of the cosmic microwave background. The BAO peak position can now be measured to better than ∼1% accuracy using galaxies and ∼1.4-1.6%
Melia, F. et al.Advertised on:
02022 -
Alternative ideas in cosmology
Some remarkable examples of alternative cosmological theories are reviewed here, ranging from a compilation of variations on the Standard Model through the more distant quasi-steady-state cosmology, plasma cosmology, or universe models as a hypersphere, to the most exotic cases including static models. The present-day Standard Model of cosmology
López-Corredoira, Martín et al.Advertised on:
02022 -
Dark Energy Survey Year 3 results: Imprints of cosmic voids and superclusters in the Planck CMB lensing map
The CMB lensing signal from cosmic voids and superclusters probes the growth of structure in the low-redshift cosmic web. In this analysis, we cross-correlated the Planck CMB lensing map with voids detected in the Dark Energy Survey Year 3 (Y3) data set (~5000 deg2), expanding on previous measurements that used Y1 catalogues (~1300 deg2). Given the
Kovács, A. et al.Advertised on:
92022 -
Predicted future fate of COSMOS galaxy protoclusters over 11 Gyr with constrained simulations
Cosmological simulations are crucial tools in studying the Universe, but they typically do not directly match real observed structures. Constrained cosmological simulations, on the other hand, are designed to match the observed distribution of galaxies. Here we present constrained simulations based on spectroscopic surveys at a redshift of z ≈ 2.3
Ata, Metin et al.Advertised on:
62022 -
Cosmic void baryon acoustic oscillation measurement: evaluation of sensitivity to selection effects
Cosmic voids defined as a subset of Delaunay triangulation (DT) circumspheres have been used to measure the baryon acoustic oscillations (BAO) scale; providing tighter constraints on cosmological parameters when combined with matter tracers. These voids are defined as spheres larger than a given radius threshold, which is constant over the survey
Forero-Sánchez, Daniel et al.Advertised on:
72022 -
Missing large-angle correlations versus even-odd point-parity imbalance in the cosmic microwave background
Context. The existence of a maximum correlation angle (θmax ≳ 60°) in the two-point angular temperature correlations of cosmic microwave background (CMB) radiation, measured by WMAP and Planck, stands in sharp contrast to the prediction of standard inflationary cosmology, in which the correlations should extend across the full sky (i.e., 180°). The
Sanchis-Lozano, M. -A. et al.Advertised on:
42022 -
Evidence for a high-z ISW signal from supervoids in the distribution of eBOSS quasars
The late-time integrated Sachs-Wolfe (ISW) imprint of $R\gtrsim 100~h^{-1}\, \mathrm{Mpc}$ superstructures is sourced by evolving large-scale potentials due to a dominant dark energy component in the ΛCDM model. The aspect that makes the ISW effect distinctly interesting is the repeated observation of stronger-than-expected imprints from supervoids
Kovács, A. et al.Advertised on:
62022 -
Black hole virial masses from single-epoch photometry. The miniJPAS test case
Context. Precise measurements of black hole masses are essential to understanding the coevolution of these sources and their host galaxies. Aims: We develop a novel approach for computing black hole virial masses using measurements of continuum luminosities and emission line widths from partially overlapping, narrow-band observations of quasars; we
Chaves-Montero, J. et al.Advertised on:
42022 -
The cosmic web connection to the dark matter halo distribution through gravity
This work investigates the connection between the cosmic web and the halo distribution through the gravitational potential at the field level. We combine three fields of research, cosmic web classification, perturbation theory expansions of the halo bias, and halo (galaxy) mock catalogue making methods. In particular, we use the invariants of the
Kitaura, F. -S. et al.Advertised on:
52022 -
Mapping the Three-dimensional Lyα Forest Large-scale Structure in Real and Redshift Space
This work presents a new physically motivated supervised machine-learning method, HYDRO-BAM, to reproduce the three-dimensional Lyα forest field in real and redshift space, which learns from a reference hydrodynamic simulation and thereby saves about seven orders of magnitude in computing time. We show that our method is accurate up to k ~ 1 h Mpc
Sinigaglia, Francesco et al.Advertised on:
32022 -
Velocity dispersion and dynamical masses for 388 galaxy clusters and groups. Calibrating the M<SUB>SZ</SUB> − M<SUB>dyn</SUB> scaling relation for the PSZ2 sample
The second catalogue of Planck Sunyaev-Zeldovich (SZ) sources, hereafter PSZ2, represents the largest galaxy cluster sample selected by means of their SZ signature in a full-sky survey. Using telescopes at the Canary Island observatories, we conducted the long-term observational program 128- MULTIPLE-16/15B (hereafter LP15), a large and complete
Aguado-Barahona, A. et al.Advertised on:
32022 -
The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: cosmological implications from multitracer BAO analysis with galaxies and voids
We construct cosmic void catalogues with the DIVE void finder upon SDSS BOSS DR12 and eBOSS DR16 galaxy samples with BAO reconstruction, and perform a joint BAO analysis using different types of galaxies and the corresponding voids. The BAO peak is evident for the galaxy-galaxy, galaxy-void, and void-void correlation functions of all data sets
Zhao, Cheng et al.Advertised on:
42022 -
UNITSIM-Galaxies: data release and clustering of emission-line galaxies
New surveys such as European Space Agencys (ESA's) Euclid mission are planned to map with unprecedented precision the large-scale structure of the Universe by measuring the 3D positions of tens of millions of galaxies. It is necessary to develop theoretically modelled galaxy catalogues to estimate the expected performance and to optimize the
Knebe, Alexander et al.Advertised on:
32022 -
Euclid preparation. XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis
The combination and cross-correlation of the upcoming Euclid data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis
Euclid Collaboration et al.Advertised on:
12022 -
The DES view of the Eridanus supervoid and the CMB cold spot
The Cold Spot is a puzzling large-scale feature in the Cosmic Microwave Background temperature maps and its origin has been subject to active debate. As an important foreground structure at low redshift, the Eridanus supervoid was recently detected, but it was subsequently determined that, assuming the standard ΛCDM model, only about 10-20 per cent
Kovács, A. et al.Advertised on:
22022
Related talks
No related talks were found.Related conferences
-
XXXIII Canary Islands Winter School of Astrophysics: Astroparticle Physics and Cosmology
The XXXIII Canary Islands Winter School of Astrophysics, organized by the Instituto de Astrofísica de Canarias (IAC), focuses onAstroparticle Physics and Cosmology. The school, to be held in San
"Salón de actos" at the Museo de la Ciencia y el Cosmos (MCC) Avda. Los Menceyes 70 38205 San Cristóbal de La LagunaSpainDate-Past