The Dynamics of the Solar Radiative Zone

Eff-Darwich, A.; Korzennik, S. G.
Bibliographical reference

Solar Physics, Volume 287, Issue 1-2, pp. 43-56

Advertised on:
10
2013
Journal
Number of authors
2
IAC number of authors
1
Citations
21
Refereed citations
17
Description
The dynamics of the solar radiative interior are still poorly constrained by comparison to the convective zone. This disparity is even more marked when we attempt to derive meaningful temporal variations. Many data sets contain a small number of modes that are sensitive to the inner layers of the Sun, but we found that the estimates of their uncertainties are often inaccurate. As a result, these data sets allow us to obtain, at best, a low-resolution estimate of the solar-core rotation rate down to approximately 0.2 R ⊙. We present inferences based on mode determination resulting from an alternate peak-fitting methodology aimed at increasing the amount of observed modes that are sensitive to the radiative zone, while special care was taken in the determination of their uncertainties. This methodology has been applied to MDI and GONG data, for the whole Solar Cycle 23, and to the newly available HMI data. The numerical inversions of all these data sets result in the best inferences to date of the rotation in the radiative region. These results and the method used to obtain them are discussed. The resulting profiles are shown and analyzed, and the significance of the detected changes is discussed.
Related projects
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search
The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary
Savita
Mathur