The Einstein Ring GAL-CLUS-022058s: a Lensed Ultrabright Submillimeter Galaxy at z = 1.4796

Díaz-Sánchez, A.; Dannerbauer, H.; Sulzenauer, N.; Iglesias-Groth, S.; Rebolo, R.
Bibliographical reference

The Astrophysical Journal

Advertised on:
We report an ultrabright lensed submillimeter galaxy at zspec = 1.4796, identified as a result of a full-sky cross-correlation of the AllWISE and Planck compact source catalogs aimed at searching for bright submillimeter galaxies at z ~ 1.5-2.8. Atacama Pathfinder Experiment (APEX)/LABOCA observations of the candidate galaxy reveal a source with flux S870μm = 54 ± 8 mJy. The position of the APEX source coincides with the position of the AllWISE mid-IR source and with the Einstein ring GAL-CLUS-022058s, observed with the Hubble Space Telescope. Archival VLT/FORS observations reveal the redshift of this Einstein ring, zspec = 1.4796, and the detection of the CO(5-4) line at zspec = 1.4802 with APEX/nFLASH230 confirms the redshift of the submillimeter emission. The lensed source appears to be gravitationally magnified by a massive foreground galaxy cluster lens at z = 0.36. We use Lenstool to model the gravitational lensing, which is close to a "fold arc" configuration for an elliptical mass distribution of the central halo, where four images of the lensed galaxy are seen; the mean magnification is μL = 18 ± 4. We have determined an intrinsic rest-frame infrared luminosity of LIR ≍1012L⊙ and a likely star formation rate of ~70-170 M⊙yr-1. The molecular gas mass is Mmol ~ 2.6 × 1010M⊙ and the gas fraction is f = 0.34 ± 0.07. We also obtain a stellar mass log (M*/M⊙) = 10.7 ± 0.1 and a specific star formation rate log (sSFR/Gyr-1) = 0.15 ± 0.03. This galaxy lies on the so-called main sequence of star-forming galaxies at this redshift.
Related projects
Galaxy proto-cluster
Molecular Gas and Dust in Galaxies Across Cosmic Time

Two of the most fundamental questions in astrophysics are the conversion of molecular gas into stars and how this physical process is a function of environments on all scales, ranging from planetary systems, stellar clusters, galaxies to galaxy clusters. The main goal of this internal project is to get insight into the formation and evolution of