The Formation of a 70 M<SUB>☉</SUB> Black Hole at High Metallicity

Belczynski, K.; Hirschi, R.; Kaiser, E. A.; Liu, Jifeng; Casares, J.; Lu, Youjun; O'Shaughnessy, R.; Heger, A.; Justham, S.; Soria, R.
Bibliographical reference

The Astrophysical Journal

Advertised on:
2
2020
Number of authors
10
IAC number of authors
1
Citations
57
Refereed citations
51
Description
A 70 ${M}_{\odot }$ black hole (BH) was discovered in the Milky Way disk in a long-period detached binary system (LB-1) with a high-metallicity 8 ${M}_{\odot }$ B star companion. Current consensus on the formation of BHs from high-metallicity stars limits the BH mass to be below 20 ${M}_{\odot }$ due to strong mass loss in stellar winds. Using analytic evolutionary formulae, we show that the formation of a 70 ${M}_{\odot }$ BH in a high-metallicity environment is possible if wind mass-loss rates are reduced by factor of five. As observations indicate, a fraction of massive stars have surface magnetic fields that may quench the wind mass-loss, independently of stellar mass and metallicity. We confirm such a scenario with detailed stellar evolution models. A nonrotating 85 ${M}_{\odot }$ star model at Z = 0.014 with decreased winds ends up as a 71 ${M}_{\odot }$ star prior to core collapse with a 32 ${M}_{\odot }$ He core and a 28 ${M}_{\odot }$ CO core. Such a star avoids the pair-instability pulsation supernova mass loss that severely limits BH mass and may form a ̃70 ${M}_{\odot }$ BH in the direct collapse. Stars that can form 70 ${M}_{\odot }$ BHs at high Z expand to significant sizes, with radii of R ≳ 600 ${R}_{\odot }$ , however, exceeding the size of the LB-1 orbit. Therefore, we can explain the formation of BHs up to 70 ${M}_{\odot }$ at high metallicity and this result is valid whether or not LB-1 hosts a massive BH. However, if LB-1 hosts a massive BH we are unable to explain how such a binary star system could have formed without invoking some exotic scenarios.
Related projects
Black hole in outburst
Black holes, neutron stars, white dwarfs and their local environment

Accreting black-holes and neutron stars in X-ray binaries provide an ideal laboratory for exploring the physics of compact objects, yielding not only confirmation of the existence of stellar mass black holes via dynamical mass measurements, but also the best opportunity for probing high-gravity environments and the physics of accretion; the most

Montserrat
Armas Padilla