The GAPS Programme with HARPS-N at TNG. VIII. Observations of the Rossiter-McLaughlin effect and characterisation of the transiting planetary systems HAT-P-36 and WASP-11/HAT-P-10

Mancini, L.; Esposito, M.; Covino, E.; Raia, G.; Southworth, J.; Tregloan-Reed, J.; Biazzo, K.; Bonomo, A. S.; Desidera, S.; Lanza, A. F.; Maciejewski, G.; Poretti, E.; Sozzetti, A.; Borsa, F.; Bruni, I.; Ciceri, S.; Claudi, R.; Cosentino, R.; Gratton, R.; Martinez Fiorenzano, A. F.; Lodato, G.; Lorenzi, V.; Marzari, F.; Murabito, S.; Affer, L.; Bignamini, A.; Bedin, L. R.; Boccato, C.; Damasso, M.; Henning, Th.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Rainer, M.; Scandariato, G.; Smareglia, R.; Zanmar Sanchez, R.
Bibliographical reference

Astronomy and Astrophysics, Volume 579, id.A136, 15 pp.

Advertised on:
7
2015
Number of authors
39
IAC number of authors
2
Citations
53
Refereed citations
44
Description
Context. Orbital obliquity is thought to be a fundamental parameter in tracing the physical mechanisms that cause the migration of giant planets from the snow line down to roughly 10-2 au from their host stars. We are carrying out a large programme to estimate the spin-orbit alignment of a sample of transiting planetary systems to study what the possible configurations of orbital obliquity are and whether they correlate with other stellar or planetary properties. Aims: We determine the true and the projected obliquity of HAT-P-36 and WASP-11/HAT-P-10 systems, respectively, which are both composed of a relatively cool star (with effective temperature Teff< 6100 K) and a hot-Jupiter planet. Methods: Thanks to the high-resolution spectrograph HARPS-N, we observed the Rossiter-McLaughlin effect for both systems by acquiring precise (3-8 m s-1) radial-velocity measurements during planetary transit events. We also present photometric observations comprising six light curves that cover five transit events, which were obtained using three medium-class telescopes. One transit of WASP-11/HAT-P-10 was followed simultaneously from two observatories. The three transit light curves of HAT-P-36 b show anomalies that are attributable to starspot complexes on the surface of the parent star, in agreement with the analysis of its spectra that indicates moderate activity ( log R'HK = -4.65 dex). By analysing the complete HATNet data set of HAT-P-36, we estimated the stellar rotation period by detecting a periodic photometric modulation in the light curve caused by star spots, obtaining Prot = 15.3 ± 0.4 days, which implies that the inclination of the stellar rotational axis with respect to the line of sight is i⋆ = 65° ± 34°. Results: We used the new spectroscopic and photometric data to revise the main physical parameters and measure the sky-projected misalignment angle of the two systems. We found λ = -14° ± 18° for HAT-P-36 and λ = 7° ± 5° for WASP-11/HAT-P-10, indicating in both cases a good spin-orbit alignment. In the case of HAT-P-36, we were also able to estimate an upper limit of its real obliquity, which turned out to be ψ< 63 degrees. Based on observations made with (i) the Italian 3.58 m Telescopio Nazionale Galileo at the Observatory of Roque de los Muchachos; (ii) the Cassini 1.52 m telescope at the Astronomical Observatory of Bologna; (iii) the Zeiss 1.23 m telescope at the Observatory of Calar Alto, and the IAC 80 cm telescope at the Teide Observatory.Table 1 and Appendix A are available in electronic form at http://www.aanda.orgData of the light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A136
Related projects
NGC 2808 Globular Cluster
Milky Way and Nearby Galaxies

The general aim of the project is to research the structure, evolutionary history and formation of galaxies through the study of their resolved stellar populations, both from photometry and spectroscopy. The group research concentrates in the most nearby objects, namely the Local Group galaxies including the Milky Way and M33 under the hypothesis

Martín
López Corredoira