Bibcode
                                    
                            Shporer, Avi; Collins, Karen A.; Astudillo-Defru, Nicola; Irwin, Jonathan; Bonfils, Xavier; Collins, Kevin I.; Matthews, Elisabeth; Winters, Jennifer G.; Anderson, David R.; Armstrong, James D.; Charbonneau, David; Cloutier, Ryan; Daylan, Tansu; Gan, Tianjun; Günther, Maximilian N.; Hellier, Coel; Horne, Keith; Huang, Chelsea X.; Jensen, Eric L. N.; Kielkopf, John; Palle, Enric; Sefako, Ramotholo; Stassun, Keivan G.; Tan, Thiam-Guan; Vanderburg, Andrew; Ricker, George R.; Latham, David W.; Vanderspek, Roland; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Colon, Knicole; Dressing, Courtney D.; Léepine, Sébastien; Muirhead, Philip S.; Rose, Mark E.; Twicken, Joseph D.; Villasenor, Jesus Noel
    Bibliographical reference
                                    The Astrophysical Journal
Advertised on:
    
                        2
            
                        2020
            
  Journal
                                    
                            Citations
                                    38
                            Refereed citations
                                    38
                            Description
                                    We report the discovery of GJ 1252 b, a planet with a radius of 1.193 ± 0.074 ${R}_{\oplus }$ and an orbital period of 0.52 days around an M3-type star (0.381 ± 0.019 ${M}_{\odot }$ , 0.391 ± 0.020 ${R}_{\odot }$ ) located 20.385 ± 0.019 pc away. We use Transiting Exoplanet Survey Satellite (TESS) data, ground-based photometry and spectroscopy, Gaia astrometry, and high angular resolution imaging to show that the transit signal seen in the TESS data must originate from a transiting planet. We do so by ruling out all false-positive scenarios that attempt to explain the transit signal as originating from an eclipsing stellar binary. Precise Doppler monitoring also leads to a tentative mass measurement of 2.09 ± 0.56 M⊕. The host star proximity, brightness (V = 12.19 mag, K = 7.92 mag), low stellar activity, and the system's short orbital period make this planet an attractive target for detailed characterization, including precise mass measurement, looking for other objects in the system, and planet atmosphere characterization.
                            Related projects
                
Exoplanets and Astrobiology
            
    The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
            
            Enric
            
                        Pallé Bago