On the Importance of the Nonequilibrium Ionization of Si IV and O IV and the Line of Sight in Solar Surges

Nóbrega-Siverio, D.; Moreno-Insertis, F.; Martínez-Sykora, J.
Bibliographical reference

The Astrophysical Journal, Volume 858, Issue 1, article id. 8, 16 pp. (2018).

Advertised on:
Surges are ubiquitous cool ejections in the solar atmosphere that often appear associated with transient phenomena like UV bursts or coronal jets. Recent observations from the Interface Region Imaging Spectrograph show that surges, although traditionally related to chromospheric lines, can exhibit enhanced emission in Si IV with brighter spectral profiles than for the average transition region (TR). In this paper, we explain why surges are natural sites to show enhanced emissivity in TR lines. We performed 2.5D radiative-MHD numerical experiments using the Bifrost code including the nonequilibrium (NEQ) ionization of silicon and oxygen. A surge is obtained as a by-product of magnetic flux emergence; the TR enveloping the emerged domain is strongly affected by NEQ effects: assuming statistical equilibrium would produce an absence of Si IV and O IV ions in most of the region. Studying the properties of the surge plasma emitting in the Si IV λ1402.77 and O IV λ1401.16 lines, we find that (a) the timescales for the optically thin losses and heat conduction are very short, leading to departures from statistical equilibrium, and (b) the surge emits in Si IV more and has an emissivity ratio of Si IV to O IV larger than a standard TR. Using synthetic spectra, we conclude the importance of line-of-sight effects: given the involved geometry of the surge, the line of sight can cut the emitting layer at small angles and/or cross it multiple times, causing prominent, spatially intermittent brightenings in both Si IV and O IV.
Related projects
Solar Eruption
Numerical Simulation of Astrophysical Processes

The general aim of this project is the investigation of astrophysical processes through the use of state­of­the­art numerical codes on massively parallel computers. More specifically, the research in many astrophysical fields requires an understanding of gas dynamical, magnetic, radiative transfer and gravitational phenomena not accessible to

Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics

Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the

Tanausú del
Pino Alemán