Large-amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis

Luna, M.; Su, Y.; Schmieder, B.; Chandra, R.; Kucera, T. A.
Bibliographical reference

The Astrophysical Journal, Volume 850, Issue 2, article id. 143, 13 pp. (2017).

Advertised on:
We follow the eruption of two related intermediate filaments observed in Hα (from GONG) and EUV (from Solar Dynamics Observatory SDO/Atmospheric Imaging assembly AIA) and the resulting large-amplitude longitudinal oscillations of the plasma in the filament channels. The events occurred in and around the decayed active region AR12486 on 2016 January 26. Our detailed study of the oscillation reveals that the periods of the oscillations are about one hour. In Hα, the period decreases with time and exhibits strong damping. The analysis of 171 Å images shows that the oscillation has two phases: an initial long-period phase and a subsequent oscillation with a shorter period. In this wavelength, the damping appears weaker than in Hα. The velocity is the largest ever detected in a prominence oscillation, approximately 100 {km} {{{s}}}-1. Using SDO/HMI magnetograms, we reconstruct the magnetic field of the filaments, modeled as flux ropes by using a flux-rope insertion method. Applying seismological techniques, we determine that the radii of curvature of the field lines in which cool plasma is condensed are in the range 75–120 Mm, in agreement with the reconstructed field. In addition, we infer a field strength of ≥7 to 30 Gauss, depending on the electron density assumed, that is also in agreement with the values from the reconstruction (8–20 Gauss). The poloidal flux is zero and the axis flux is on the order of 1020 to 1021 Mx, confirming the high shear existing even in a non-active filament.
Related projects
Solar Eruption
Numerical Simulation of Astrophysical Processes

The general aim of this project is the investigation of astrophysical processes through the use of state­of­the­art numerical codes on massively parallel computers. More specifically, the research in many astrophysical fields requires an understanding of gas dynamical, magnetic, radiative transfer and gravitational phenomena not accessible to