The Lithium Depletion Boundary and the Age of the Hyades Cluster

Martín, E. L.; Lodieu, N.; Pavlenko, Y.; Béjar, V. J. S.
Bibliographical reference

The Astrophysical Journal, Volume 856, Issue 1, article id. 40, 8 pp. (2018).

Advertised on:
3
2018
Number of authors
4
IAC number of authors
2
Citations
80
Refereed citations
72
Description
Determination of the lithium depletion boundary (LDB), i.e., the observational limit below which the cores of very low-mass objects do not reach high enough temperatures for Li destruction, has been used to obtain ages for several open clusters and stellar associations younger than 200 Myr—which until now has been considered the practical upper limit on the range of applicability of this method. In this work, we show that the LDB method can be extended to significant older ages than previously thought. Intermediate resolution optical spectra of six L-type candidate members in the Hyades cluster obtained using Optical System for Imaging and Low Resolution Integrated Spectroscopy at the 10.4 m Gran Telescopio Canarias are presented. The {Li} {{I}} 670.8 nm resonance doublet is clearly detected only in the two faintest and coolest of these objects, which are classified as L3.5 to L4 brown dwarf (BD) cluster members with luminosities around 10‑4 solar. Lithium depletion factors are estimated for our targets with the aid of synthetic spectra and they are compared with predictions from evolutionary models. An LDB age of 650 ± 70 Myr for the Hyades provides a consistent description of our data using a set of state-of-the-art evolutionary models for BDs calculated by Baraffe et al. Based on data obtained at the Gran Telescopio Canarias.
Related projects
Discovery of a system of super-Earths orbiting the star HD 176986 with about 5.7 and 9.2 Earth masses.
Very Low Mass Stars, Brown Dwarfs and Planets

Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so

Rafael
Rebolo López
Projects' name image
Exoplanets and Astrobiology

The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable

Enric
Pallé Bago