Metallicity of Galactic RR Lyrae from Optical and Infrared Light Curves. II. Period-Fourier-Metallicity Relations for First Overtone RR Lyrae

Mullen, Joseph P.; Marengo, Massimo; Martínez-Vázquez, Clara E.; Bono, Giuseppe; Braga, Vittorio F.; Chaboyer, Brian; Crestani, Juliana; Dall'Ora, Massimo; Fabrizio, Michele; Fiorentino, Giuliana; Monelli, Matteo; Neeley, Jillian R.; Stetson, Peter B.; Thévenin, Frédéric
Bibliographical reference

The Astrophysical Journal

Advertised on:
6
2022
Number of authors
14
IAC number of authors
1
Citations
7
Refereed citations
7
Description
We present new period-ϕ 31-[Fe/H] relations for first-overtone RRL stars (RRc), calibrated over a broad range of metallicities (-2.5 ≲ [Fe/H] ≲ 0.0) using the largest currently available set of Galactic halo field RRL with homogeneous spectroscopic metallicities. Our relations are defined in the optical (ASAS-SN V band) and, inaugurally, in the infrared (WISE W1 and W2 bands). Our V-band relation can reproduce individual RRc spectroscopic metallicities with a dispersion of 0.30 dex over the entire metallicity range of our calibrator sample (an rms smaller than what we found for other relations in literature including nonlinear terms). Our infrared relation has a similar dispersion in the low- and intermediate-metallicity range ([Fe/H] ≲ -0.5), but tends to underestimate the [Fe/H] abundance around solar metallicity. We tested our relations by measuring both the metallicity of the Sculptor dSph and a sample of Galactic globular clusters, rich in both RRc and RRab stars. The average metallicity we obtain for the combined RRL sample in each cluster is within ±0.08 dex of their spectroscopic metallicities. The infrared and optical relations presented in this work will enable deriving reliable photometric RRL metallicities in conditions where spectroscopic measurements are not feasible; e.g., in distant galaxies or reddened regions (observed with upcoming Extremely Large Telescopes and the James Webb Space Telescope), or in the large sample of new RRL that will be discovered in large-area time-domain photometric surveys (such as the LSST and the Roman space telescope).
Related projects
A view of our Milky Way galaxy with its close neighbors the Magellanic Clouds
Galaxy Evolution in the Local Group

Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy

Matteo
Monelli