NIHAO-LG: the uniqueness of Local Group dwarf galaxies

Arora, Nikhil; Macciò, Andrea V.; Courteau, Stéphane; Buck, Tobias; Libeskind, Noam I.; Sorce, Jenny G.; Brook, Chris B.; Hoffman, Yehuda; Yepes, Gustavo; Carlesi, Edoardo; Stone, Connor
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
Number of authors
IAC number of authors
Refereed citations
Recent observational and theoretical studies of the Local Group (LG) dwarf galaxies have highlighted their unique star-formation history, stellar metallicity, gas content, and kinematics. We investigate the commonality of these features by comparing constrained LG and field central dwarf halo simulations in the Numerical Investigation of a Hundred Astrophysical Objects (NIHAO) project. Our simulations, performed with NIHAO-like hydrodynamics which track the evolution of the Milky Way (MW) and M31 along with ~100 dwarfs in the LG, reveal the total gas mass and stellar properties (velocity dispersion, evolution history, etc.) of present-day LG dwarfs to be similar to field systems. However, relative to field galaxies, LG dwarfs have more cold gas in their central parts and more metal-rich gas in the halo stemming from interactions with other dwarfs living in a high-density environment like the LG. Interestingly, the direct impact of massive MW/M31 analogues on the metallicity evolution of LG dwarfs is minimal; LG dwarfs accrete high-metallicity gas mostly from other dwarfs at late times. We have also tested for the impact of metal diffusion on the chemical evolution of LG dwarfs, and found that it does not affect the stellar or gaseous content of LG dwarfs. Our simulations suggest that the stellar components of LG dwarfs offer a unique and unbiased local laboratory for galaxy-formation tests and comparisons, especially against the overall dwarf population in the Universe.
Related projects
Project Image
Numerical Astrophysics: Galaxy Formation and Evolution
How galaxies formed and evolved through cosmic time is one of the key questions of modern astronomy and astrophysics. Cosmological time- and length-scales are so large that the evolution of individual galaxies cannot be directly observed. Only through numerical simulations can one follow the emergence of cosmic structures within the current
Dalla Vecchia