NIHAO XXIV: rotation- or pressure-supported systems? Simulated Ultra Diffuse Galaxies show a broad distribution in their stellar kinematics

Cardona-Barrero, Salvador; Di Cintio, Arianna; Brook, Christopher B. A.; Ruiz-Lara, Tomas; Beasley, Michael A.; Falcón-Barroso, Jesus; Macciò, Andrea V.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
7
2020
Number of authors
7
IAC number of authors
6
Citations
15
Refereed citations
15
Description
In recent years, a new window on galaxy evolution opened, thanks to the increasing discovery of galaxies with a low-surface brightness, such as Ultra Diffuse Galaxies (UDGs). The formation mechanism of these systems is still a much debated question and so are their kinematical properties. In this work, we address this topic by analysing the stellar kinematics of isolated UDGs formed in the hydrodynamical simulation suite Numerical Investigation of a Hundred Astrophysical Objects (NIHAO). We construct projected line-of-sight velocity and velocity dispersion maps to compute the projected specific angular momentum, λR, to characterize the kinematical support of the stars in these galaxies. We found that UDGs cover a broad distribution, ranging from dispersion to rotation-supported galaxies, with similar abundances in both regimes. The degree of rotation support of simulated UDGs correlates with several properties such as galaxy morphology, higher H I fractions, and larger effective radii with respect to the dispersion-supported group, while the dark matter halo spin and mass accretion history are similar among the two populations. We demonstrate that the alignment of the infalling baryons into the protogalaxy at early z is the principal driver of the z = 0 stellar kinematic state: pressure-supported isolated UDGs form via misaligned gas accretion while rotation-supported ones build up their baryons in an ordered manner. Accounting for random inclination effects, we predict that a comprehensive survey will find nearly half of field UDGs to have rotationally supported stellar discs, when selecting UDGs with effective radius larger than 1 kpc.
Related projects
Project Image
Numerical Astrophysics: Galaxy Formation and Evolution

How galaxies formed and evolved through cosmic time is one of the key questions of modern astronomy and astrophysics. Cosmological time- and length-scales are so large that the evolution of individual galaxies cannot be directly observed. Only through numerical simulations can one follow the emergence of cosmic structures within the current

Claudio
Dalla Vecchia
Group members
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology

We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.

Ignacio
Martín Navarro