Observational evidence for two-component distributions describing solar magnetic bright points

Berrios Saavedra, Gerardine; Utz, Dominik; Vargas Domínguez, Santiago; Campos Rozo, José Iván; González Manrique, Sergio Javier; Gömöry, Peter; Kuckein, Christoph; Balthasar, Horst; Zelina, Peter
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
1
2022
Number of authors
9
IAC number of authors
2
Citations
6
Refereed citations
5
Description
Context. High-resolution observations of the solar photosphere reveal the presence of fine structures, in particular the so-called Magnetic Bright Points (MBPs), which are small-scale features associated with strong magnetic field regions of the order of kilogauss (kG). It is especially relevant to study these magnetic elements, which are extensively detected in all moments during the solar cycle, in order to establish their contribution to the behavior of the solar atmosphere, and ultimately a plausible role within the coronal heating problem.
Aims: Characterisation of size and velocity distributions of MBPs in the solar photosphere in two different datasets of quiet Sun images acquired with high-resolution solar instruments i.e. Solar Optical Telescope SOT/Hinode and the High-resolution Fast Imager HiFI/GREGOR, in the G-band (4308 Å).
Methods: In order to detect the MBPs, an automatic segmentation and identification algorithm is used. Next, the identified features were tracked to measure their proper motions. Finally, a statistical analysis of hundreds of MBPs is carried out, generating histograms for areas, diameters and horizontal velocities.
Results: This work establishes that areas and diameters of MBPs display log-normal distributions that are well-fitted by two different components, whereas the velocity vector components follow Gaussians and the vector magnitude a Rayleigh distribution revealing again for all vector elements a two component composition.
Conclusions: The results can be interpreted as due to the presence of two different populations of MBPs in the solar photosphere one likely related to stronger network magnetic flux elements and the other one to weaker intranetwork flux elemens. In particular this work concludes on the effect of the different spatial resolution of GREGOR and Hinode telescopes, affecting detections and average values.
Related projects
Project Image
Solar and Stellar Magnetism

Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During

Tobías
Felipe García