The OmegaWhite Survey for Short-period Variable Stars. V. Discovery of an Ultracompact Hot Subdwarf Binary with a Compact Companion in a 44-minute Orbit

Kupfer, T.; Ramsay, G.; van Roestel, J.; Brooks, J.; MacFarlane, S. A.; Toma, R.; Groot, P. J.; Woudt, P. A.; Bildsten, L.; Marsh, T. R. et al.
Bibliographical reference

The Astrophysical Journal, Volume 851, Issue 1, article id. 28, 10 pp. (2017).

Advertised on:
We report the discovery of the ultracompact hot subdwarf (sdOB) binary OW J074106.0–294811.0 with an orbital period of {P}{orb}=44.66279+/- 1.16× {10}-4 minutes, making it the most compact hot subdwarf binary known. Spectroscopic observations using the VLT, Gemini and Keck telescopes revealed a He-sdOB primary with an intermediate helium abundance, {T}{eff} = 39 400+/- 500 K and {log}g = 5.74 ± 0.09. High signal-to-noise ratio light curves show strong ellipsoidal modulation resulting in a derived sdOB mass {M}{sdOB}=0.23+/- 0.12 {M}ȯ with a WD companion ({M}{WD}=0.72+/- 0.17 {M}ȯ ). The mass ratio was found to be q={M}{sdOB}/{M}{WD}=0.32+/- 0.10. The derived mass for the He-sdOB is inconsistent with the canonical mass for hot subdwarfs of ≈ 0.47 {M}ȯ . To put constraints on the structure and evolutionary history of the sdOB star we compared the derived {T}{eff}, {log}g, and sdOB mass to evolutionary tracks of helium stars and helium white dwarfs calculated with Modules for Experiments in Stellar Astrophysics (MESA). We find that the best-fitting model is a helium white dwarf with a mass of 0.320 {M}ȯ , which left the common envelope ≈ 1.1 {Myr} ago, which is consistent with the observations. As a helium white dwarf with a massive white dwarf companion, the object will reach contact in 17.6 Myr at an orbital period of 5 minutes. Depending on the spin–orbit synchronization timescale the object will either merge to form an R CrB star or end up as a stably accreting AM CVn-type system with a helium white dwarf donor.
Related projects
Representación de la variable cataclísmica SS Cygni (Chris Moran)
Binary Stars

The study of binary stars is essential to stellar astrophysics. A large number of stars form and evolve within binary systems. Therefore, their study is fundamental to understand stellar and galactic evolution. Particularly relevant is that binary systems are still the best source of precise stellar mass and radius measurements. Research lines

Rodríguez Gil
Black hole in outburst
Nature and Evolution of X-Ray Binaries

Accreting black-holes and neutron stars in X-ray binaries provide an ideal laboratory for exploring the physics of compact objects, yielding not only confirmation of the existence of stellar mass black holes via dynamical mass measurements, but also the best opportunity for probing high-gravity environments and the physics of accretion; the most

Muñoz Darias