Optical detection of the rapidly spinning white dwarf in V1460 Her

Pelisoli, Ingrid; Marsh, T. R.; Ashley, R. P.; Hakala, Pasi; Aungwerojwit, A.; Burdge, K.; Breedt, E.; Brown, A. J.; Chanthorn, K.; Dhillon, V. S.; Dyer, M. J.; Green, M. J.; Kerry, P.; Littlefair, S. P.; Parsons, S. G.; Sahman, D. I.; Wild, J. F.; Yotthanathong, S.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
11
2021
Number of authors
18
IAC number of authors
1
Citations
3
Refereed citations
3
Description
Accreting magnetic white dwarfs offer an opportunity to understand the interplay between spin-up and spin-down torques in binary systems. Monitoring of the white dwarf spin may reveal whether the white dwarf spin is currently in a state of near-equilibrium, or of unidirectional evolution towards longer or shorter periods, reflecting the recent history of the system and providing constraints for evolutionary models. This makes the monitoring of the spin history of magnetic white dwarfs of high interest. In this paper, we report the results of a campaign of follow-up optical photometry to detect and track the 39- s white dwarf spin pulses recently discovered in Hubble Space Telescope data of the cataclysmic variable V1460 Her. We find the spin pulsations to be present in the g-band photometry at a typical amplitude of 0.4 per cent. Under favourable observing conditions, the spin signal is detectable using 2-m class telescopes. We measured pulse-arrival times for all our observations, which allowed us to derive a precise ephemeris for the white dwarf spin. We have also derived an orbital modulation correction that can be applied to the measurements. With our limited baseline of just over 4 yr, we detect no evidence yet for spin-up or spin-down of the white dwarf, obtaining a lower limit of $|P/\dot{P}| \gt 4\times 10^{7}$ yr, which is already four to eight times longer than the time-scales measured in two other cataclysmic variable systems containing rapidly rotating white dwarfs, AE Aqr and AR Sco.
Related projects
Representación de la variable cataclísmica SS Cygni (Chris Moran)
Binary Stars

The study of binary stars is essential to stellar astrophysics. A large number of stars form and evolve within binary systems. Therefore, their study is fundamental to understand stellar and galactic evolution. Particularly relevant is that binary systems are still the best source of precise stellar mass and radius measurements. Research lines

Pablo
Rodríguez Gil