Bibcode
                                    
                            Bourrier, V.; Kitzmann, D.; Kuntzer, T.; Nascimbeni, V.; Lendl, M.; Lavie, B.; Hoeijmakers, H. J.; Pino, L.; Ehrenreich, D.; Heng, K.; Allart, R.; Cegla, H. M.; Dumusque, X.; Melo, C.; Astudillo-Defru, N.; Caldwell, D. A.; Cretignier, M.; Giles, H.; Henze, C. E.; Jenkins, J.; Lovis, C.; Murgas, F.; Pepe, F.; Ricker, G. R.; Rose, M. E.; Seager, S.; Segransan, D.; Suárez-Mascareño, A.; Udry, S.; Vanderspek, R.; Wyttenbach, A.
    Bibliographical reference
                                    Astronomy and Astrophysics
Advertised on:
    
                        5
            
                        2020
            
  Journal
                                    
                            Citations
                                    65
                            Refereed citations
                                    63
                            Description
                                    We present the analysis of TESS optical photometry of WASP-121b, which reveals the phase curve of this transiting ultra-hot Jupiter. Its hotspot is located at the sub-stellar point, showing inefficient heat transport from the dayside (2870 ± 50 K) to the nightside (<2500 K at 3σ) at the altitudes probed by TESS. The TESS eclipse depth, measured at the shortest wavelength to date for WASP-121b, confirms the strong deviation from blackbody planetary emission. Our atmospheric retrieval on the complete emission spectrum supports the presence of a temperature inversion, which can be explained by the presence of VO and possibly TiO and FeH. The strong planetary emission at short wavelengths could arise from an H- continuum. 
                            The reduced light curve of WASP-121, phase-folded at the planet orbital period and binned (Fig. 2) is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/637/A36
Related projects
                 
Exoplanets and Astrobiology
            
    The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
            
            Enric
            
                        Pallé Bago