Bibcode
                                    
                            Longeard, Nicolas; Jablonka, Pascale; Arentsen, Anke; Thomas, Guillaume F.; Aguado, David S.; Carlberg, Raymond G.; Lucchesi, Romain; Malhan, Khyati; Martin, Nicolas; McConnachie, Alan W.; Navarro, Julio F.; Sánchez-Janssen, Rubén; Sestito, Federico; Starkenburg, Else; Yuan, Zhen
    Bibliographical reference
                                    Monthly Notices of the Royal Astronomical Society
Advertised on:
    
                        10
            
                        2022
            
  Citations
                                    38
                            Refereed citations
                                    31
                            Description
                                    We present a new spectroscopic study of the dwarf galaxy Boötes I (Boo I) with data from the Anglo-Australian Telescope and its AAOmega spectrograph together with the Two Degree Field multi-object system. We observed 36 high-probability Boo I stars selected using Gaia Early Data Release 3 proper motions and photometric metallicities from the Pristine survey. Out of those, 27 are found to be Boo I stars, resulting in an excellent success rate of 75 per cent at finding new members. Our analysis uses a new pipeline developed to estimate radial velocities and equivalent widths of the calcium triplet lines from Gaussian and Voigt line profile fits. The metallicities of 16 members are derived, including 3 extremely metal-poor stars ([Fe/H] < -3.0), which translates into a success rate of 25 per cent at finding them with the combination of Pristine and Gaia. Using the large spatial extent of our new members that spans up to 4.1 half-light radii and spectroscopy from the literature, we find a systemic velocity gradient of 0.40 ± 0.10 km s-1 arcmin-1 and a small but resolved metallicity gradient of -0.008 ± 0.003 dex arcmin-1. Finally, we show that Boo I is more elongated than previously thought with an ellipticity of ϵ = 0.68 ± 0.15. Its velocity and metallicity gradients as well as its elongation suggest that Boo I may have been affected by tides, a result supported by direct dynamical modelling.
                            Related projects
                 
Galaxy Evolution in the Local Group
            
    Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy
            
            Emma
            
                        Fernández Alvar