The puzzling interpretation of NIR indices: The case of NaI2.21

Aguado, D. S.; Allende-Prieto, C.; Knapen, J. H.; La Barbera, F.; Peletier, R. F.; Vazdekis, A.; Röck, B.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 472, Issue 1, p.361-372

Advertised on:
11
2017
Description
We present a detailed study of the Na I line strength index centred in the K band at 22 100 Å (NaI2.21 hereafter) relying on different samples of early-type galaxies. Consistent with previous studies, we find that the observed line strength indices cannot be fit by state-of-the-art scaled-solar stellar population models, even using our newly developed models in the near infrared (NIR). The models clearly underestimate the large NaI2.21 values measured for most early-type galaxies. However, we develop an Na-enhanced version of our newly developed models in the NIR, which - together with the effect of a bottom-heavy initial mass function - yield NaI2.21 indices in the range of the observations. Therefore, we suggest a scenario in which the combined effect of [Na/Fe] enhancement and a bottom-heavy initial mass function are mainly responsible for the large NaI2.21 indices observed for most early-type galaxies. To a smaller extent, also [C/Fe] enhancement might contribute to the large observed NaI2.21 values.
Related projects
Project Image
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology

Understanding the formation and evolution of galaxies is one of the key challenges of modern astronomy. Exquisitely detailed analyses of nearby and distant galaxies is now possible with the increasing amount of observational data coming from large facilities. Quality spectroscopic data is also becoming more common for galaxies up to and beyond z ~

Project Image
Spiral Galaxies: Evolution and Consequences

Our small group is well known and respected internationally for our innovative and important work on various aspects of the structure and evolution of nearby spiral galaxies. We primarily use observations at various wavelengths, exploiting synergies that allow us to answer the most pertinent questions relating to what the main properties of

Johan Hendrik
Knapen Koelstra
spectrum of mercury lamp
Chemical Abundances in Stars

Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to

Carlos
Allende Prieto