The Second APOKASC Catalog: The Empirical Approach

Pinsonneault, M. H.; Elsworth, Yvonne P.; Tayar, Jamie; Serenelli, Aldo; Stello, Dennis; Zinn, Joel; Mathur, S.; García, Rafael A.; Johnson, Jennifer A.; Hekker, Saskia; Huber, Daniel; Kallinger, Thomas; Mészáros, Szabolcs; Mosser, Benoit; Stassun, Keivan; Girardi, Léo; Rodrigues, Thaíse S.; Silva Aguirre, Victor; An, Deokkeun; Basu, Sarbani; Chaplin, William J.; Corsaro, Enrico; Cunha, Katia; García-Hernández, D. A.; Holtzman, Jon; Jönsson, Henrik; Shetrone, Matthew; Smith, Verne V.; Sobeck, Jennifer S.; Stringfellow, Guy S.; Zamora, O.; Beers, Timothy C.; Fernández-Trincado, J. G.; Frinchaboy, Peter M.; Hearty, Fred R.; Nitschelm, Christian
Bibliographical reference

The Astrophysical Journal Supplement Series, Volume 239, Issue 2, article id. 32, 25 pp. (2018).

Advertised on:
12
2018
Number of authors
36
IAC number of authors
3
Citations
207
Refereed citations
188
Description
We present a catalog of stellar properties for a large sample of 6676 evolved stars with Apache Point Observatory Galactic Evolution Experiment spectroscopic parameters and Kepler asteroseismic data analyzed using five independent techniques. Our data include evolutionary state, surface gravity, mean density, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them. We employ a new empirical approach for combining asteroseismic measurements from different methods, calibrating the inferred stellar parameters, and estimating uncertainties. With high statistical significance, we find that asteroseismic parameters inferred from the different pipelines have systematic offsets that are not removed by accounting for differences in their solar reference values. We include theoretically motivated corrections to the large frequency spacing (Δν) scaling relation, and we calibrate the zero-point of the frequency of the maximum power (ν max) relation to be consistent with masses and radii for members of star clusters. For most targets, the parameters returned by different pipelines are in much better agreement than would be expected from the pipeline-predicted random errors, but 22% of them had at least one method not return a result and a much larger measurement dispersion. This supports the usage of multiple analysis techniques for asteroseismic stellar population studies. The measured dispersion in mass estimates for fundamental calibrators is consistent with our error model, which yields median random and systematic mass uncertainties for RGB stars of order 4%. Median random and systematic mass uncertainties are at the 9% and 8% level, respectively, for red clump stars.
Related projects
Project Image
Nucleosynthesis and molecular processes in the late stages of Stellar Evolution

Low- to intermediate-mass (M < 8 solar masses, Ms) stars represent the majority of stars in the Cosmos. They finish their lives on the Asymptotic Giant Branch (AGB) - just before they form planetary nebulae (PNe) - where they experience complex nucleosynthetic and molecular processes. AGB stars are important contributors to the enrichment of the

Domingo Aníbal
García Hernández
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search

The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary

Savita
Mathur