SPECULOOS Northern Observatory: Searching for Red Worlds in the Northern Skies

Burdanov, Artem Y.; Wit, Julien de; Gillon, Michaël; Rebolo, Rafael; Sebastian, Daniel; Alonso, Roi; Sohy, Sandrine; Niraula, Prajwal; Garcia, Lionel; Barkaoui, Khalid; Chinchilla, Patricia; Ducrot, Elsa; Murray, Catriona A.; Pedersen, Peter P.; Jehin, Emmanuël; McCormac, James; Zúñiga-Fernández, Sebastián
Bibliographical reference

Publications of the Astronomical Society of the Pacific

Advertised on:
10
2022
Number of authors
17
IAC number of authors
4
Citations
8
Refereed citations
7
Description
SPECULOOS is a ground-based transit survey consisting of six identical 1 m robotic telescopes. The immediate goal of the project is to detect temperate terrestrial planets transiting nearby ultracool dwarfs (late M-dwarf stars and brown dwarfs), which could be amenable for atmospheric research with the next generation of telescopes. Here, we report the developments of the northern counterpart of the project-SPECULOOS Northern Observatory, and present its performance during the first three years of operations from mid-2019 to mid-2022. Currently, the observatory consists of one telescope, which is named Artemis. The Artemis telescope demonstrates remarkable photometric precision, allowing it to be ready to detect new transiting terrestrial exoplanets around ultracool dwarfs. Over the period of the first three years after the installation, we observed 96 objects from the SPECULOOS target list for 6000 hr with a typical photometric precision of 0.5%, and reaching a precision of 0.2% for relatively bright non-variable targets with a typical exposure time of 25 s. Our weather downtime (clouds, high wind speed, high humidity, precipitation and/or high concentration of dust particles in the air) over the period of three years was 30% of overall night time. Our actual downtime is 40% because of additional time loss associated with technical problems.
Related projects
Discovery of a system of super-Earths orbiting the star HD 176986 with about 5.7 and 9.2 Earth masses.
Very Low Mass Stars, Brown Dwarfs and Planets

Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so

Rafael
Rebolo López
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search

The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary

Savita
Mathur