A super-Earth orbiting the nearby M dwarf GJ 536

Suárez Mascareño, A.; González Hernández, J. I.; Rebolo, R.; Astudillo-Defru, N.; Bonfils, X.; Bouchy, F.; Delfosse, X.; Forveille, T.; Lovis, C.; Mayor, M.; Murgas, F.; Pepe, F.; Santos, N. C.; Udry, S.; Wünsche, A.; Velasco, S.
Bibliographical reference

Astronomy and Astrophysics, Volume 597, id.A108, 11 pp.

Advertised on:
1
2017
Number of authors
16
IAC number of authors
4
Citations
20
Refereed citations
18
Description
We report the discovery of a super-Earth orbiting the star GJ 536 based on the analysis of the radial-velocity time series from the HARPS and HARPS-N spectrographs. GJ 536 b is a planet with a minimum mass Msini of 5.36 ± 0.69 M⊕; it has an orbital period of 8.7076 ± 0.0025 d at a distance of 0.066610(13) AU, and an orbit that is consistent with circular. The host star is the moderately quiet M1 V star GJ 536, located at 10 pc from the Sun. We find the presence of a second signal at 43 d that we relate to stellar rotation after analysing the time series of Ca II H&K and Hα spectroscopic indicators and photometric data from the ASAS archive. We find no evidence linking the short period signal to any activity proxy. We also tentatively derived a stellar magnetic cycle of less than 3 yr. The data used in this paper (Table A.1) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A108
Related projects
Projects' name image
Exoplanets and Astrobiology

The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable

Enric
Pallé Bago