Survey of Surveys. I. The largest compilation of radial velocities for the Galaxy

Tsantaki, M.; Pancino, E.; Marrese, P.; Marinoni, S.; Rainer, M.; Sanna, N.; Turchi, A.; Randich, S.; Gallart, C.; Battaglia, G.; Masseron, T.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
3
2022
Number of authors
11
IAC number of authors
3
Citations
26
Refereed citations
23
Description
Context. In the present-day panorama of large spectroscopic surveys, the amount, diversity, and complexity of the available data continuously increase. The overarching goal of studying the formation and evolution of our Galaxy is hampered by the heterogeneity of instruments, selection functions, analysis methods, and measured quantities.
Aims: We present a comprehensive catalogue, the Survey of Surveys (SoS), built by homogeneously merging the radial velocity (RV) determinations of the largest ground-based spectroscopic surveys to date, such as APOGEE, GALAH, Gaia-ESO, RAVE, and LAMOST, using Gaia as a reference. This pilot study serves to prove the concept and to test the methodology that we plan to apply in the future to the stellar parameters and abundance ratios as well.
Methods: We have devised a multi-staged procedure that includes: (i) the cross match between Gaia and the spectroscopic surveys using the official Gaia cross-match algorithm, (ii) the normalisation of uncertainties using repeated measurements or the three-cornered hat method, (iii) the cross calibration of the RVs as a function of the main parameters on which depend (magnitude, effective temperature, surface gravity, metallicity, and signal-to-noise ratio) to remove trends and zero point offsets, and (iv) the comparison with external high-resolution samples, such as the Gaia RV standards and the Geneva-Copenhagen survey, to validate the homogenisation procedure and to calibrate the RV zero-point of the SoS catalogue.
Results: We provide the largest homogenised RV catalogue to date, containing almost 11 million stars, of which about half come exclusively from Gaia and half in combination with the ground-based surveys. We estimate the accuracy of the RV zero-point to be about 0.16−0.31 km s−1 and the RV precision to be in the range 0.05−1.50 km s−1 depending on the type of star and on its survey provenance. We validate the SoS RVs with open clusters from a high resolution homogeneous samples and provide the systemic velocity of 55 individual open clusters. Additionally, we provide median RVs for 532 clusters recently discovered by Gaia data.
Conclusions: The SoS is publicly available and ready to be applied to various research projects, such as the study of star clusters, Galactic archaeology, stellar streams, or the characterisation of planet-hosting stars, to name a few. We also plan to include survey updates and more data sources in future versions of the SoS.

The catalogue and the full Table 10 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/659/A95

The SoS catalogue of RVs and the re-calibrated survey catalogues are available at http://gaiaportal.ssdc.asi.it/SoS. We recommend to the users of the SoS to include the respective references of the individual surveys we used for this work in their acknowledgements.
Related projects
A view of our Milky Way galaxy with its close neighbors the Magellanic Clouds
Galaxy Evolution in the Local Group

Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy

Matteo
Monelli
Project Image
Nucleosynthesis and molecular processes in the late stages of Stellar Evolution

Low- to intermediate-mass (M < 8 solar masses, Ms) stars represent the majority of stars in the Cosmos. They finish their lives on the Asymptotic Giant Branch (AGB) - just before they form planetary nebulae (PNe) - where they experience complex nucleosynthetic and molecular processes. AGB stars are important contributors to the enrichment of the

Domingo Aníbal
García Hernández