A swarm of dusty objects in orbit around the central star of planetary nebula WeSb 1

Budaj, Jan; Bernhard, Klaus; Jones, David; Munday, James
Bibliographical reference

Nature Astronomy

Advertised on:
3
2025
Number of authors
4
IAC number of authors
1
Citations
3
Refereed citations
3
Description
Exoplanets and smaller bodies have been detected orbiting different kind of stars. However, we do not know of any such objects in planetary nebulae, the short-lived stage of stellar evolution between the asymptotic giant branch and white dwarf phases. The planetary activity (destruction and formation) may be accompanied by dust clouds. Hence, we searched for dust occultation events in planetary nebulae using archival photometric data. We show that the central star of PN WeSb 1 features numerous dimming events with typical durations of a few days to weeks that are up to 3 mag deep. This variability is mainly stochastic with an indication of a 400 d period. The occultations are almost grey, indicating dust grains larger than about 0.1 μm. Based on our follow-up observations, we argue that the central star is a wide binary and that these events are most probably caused by debris from disintegrated small rocky bodies that escaped from the former asymptotic giant branch star to find safe harbour around the companion star. The latter star dominates the optical spectrum enabling us to see the eclipses. This means that planetary systems are present and undergo violent evolution during the planetary nebula stage.
Related projects
Izquierda - Imagen RGB de la nebulosa de Orión y M43 obtenida filtros estrechos con la cámara WFC en el INT: H alfa (rojo), [S II] 6716+30 (verde), [O III] 5007 (azul). Derecha - Imagen en falso color de la nebulosa planetaria NGC 6778. En azul se ve la emisión en la línea de O II tomada con el filtro sintonizable azul del instrumento OSIRIS en el GTC; en verde imagen con el filtro estrecho de [O III] del Nordic Optical Telescope (NOT).
Physics of Ionized Nebulae
The research that is being carried out by the group can be condensed into two main lines: 1) Study of the structure, dynamics, physical conditions and chemical evolution of Galactic and extragalactic ionized nebulae through detailed analysis and modelization of their spectra. Investigation of chemical composition gradients along the disk of our
Jorge
García Rojas