Separation between RR Lyrae and type II Cepheids and their importance for a distance determination: the case of omega Cen

Braga, V. F.; Bono, G.; Fiorentino, G.; Stetson, P. B.; Dall'Ora, M.; Salaris, M.; da Silva, R.; Fabrizio, M.; Marinoni, S.; Marrese, M. P.; Mateo, M.; Matsunaga, N.; Monelli, M.; Wallerstein, G.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
12
2020
Number of authors
14
IAC number of authors
1
Citations
21
Refereed citations
19
Description
The separation between RR Lyrae (RRLs) and type II Cepheid (T2Cs) variables based on their period is debated. Both types of variable stars are distance indicators, and we aim to promote the use of T2Cs as distance indicators in synergy with RRLs. We adopted new and existing optical and near-infrared (NIR) photometry of ω Cen to investigate several diagnostics (color-magnitude diagram, Bailey diagram, Fourier decomposition of the light curve, and amplitude ratios) for their empirical separation. We found that the classical period threshold at one day is not universal and does not dictate the evolutionary stage: V92 has a period of 1.3 days but is likely to be still in its core helium-burning phase, which is typical of RRLs. We also derived NIR period-luminosity relations and found a distance modulus of 13.65 ± 0.07 (err.) ± 0.01 (σ) mag, in agreement with the recent literature. We also found that RRLs and T2Cs obey the same period-luminosity relations in the NIR. This equivalence provides the opportunity of adopting RRLs+T2Cs as an alternative to classical Cepheids to calibrate the extragalactic distance scale.

Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/644/A95

Related projects
A view of our Milky Way galaxy with its close neighbors the Magellanic Clouds
Galaxy Evolution in the Local Group
Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy
Matteo
Monelli