This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • Comparative Milky Way and ultra-diffuse galaxy
    A step forward to solve the mystery of ultra-diffuse galaxies

    A study by the Instituto de Astrofísica de Canarias (IAC), led by researchers Nushkia Chamba, Ignacio Trujillo and Johan H. Knapen, reveals that the enigmatic ultra-diffuse galaxies, very low-luminosity and low-density star galaxies, are similar in size to dwarf galaxies. The results, which are published in the journal Astronomy & Astrophysics, provide new clues about the number and type of galaxies in our Universe and about the nature of dark matter.

    Advertised on
  • A Milky Way-like spiral galaxy, a dwarf and a faint ultra-diffuse galaxy shown to the same physical scale using images of similar depth.  On average, the diffuse galaxy is 10 times smaller than the Milky Way analogue. Credit: Adapted from Chamba, Trujillo & Knapen (2020).
    Are ultra-diffuse galaxies Milky Way-sized?

    Now almost 70 years since its introduction, the effective or half-light radius has become a very popular choice for characterising galaxy size. However, the effective radius measures the concentration of light within galaxies and thus does not capture our intuitive definition of size which is related to the edge or boundary of objects. For this reason, we aim to demonstrate the undesirable consequence of using the effective radius to draw conclusions about the nature of faint ultra-diffuse galaxies (UDGs) when compared to dwarfs and Milky Way-like galaxies. Instead of the effective radius

    Advertised on
  • Composición espectro LFC
    Sucessful test of new technology which should help to discover “other Earths”

    A scientific team, led by the Max Planck Institute for Quantum Optics, with participation from the Instituto de Astrofísica de Canarias, confirms the high degree of precision of the new calibration system known as a “laser frequency comb” which could be the key to the detection of planets like the Earth. The study is published in the journal Nature Astronomy.

    Advertised on
  • 1D-LTE oxygen-to-iron abundance ratios [O/Fe] vs. metallicity [Fe/H] of the iron-poor star J0815+4729 (large star symbol) compared with literature measurements from the [O I] forbidden line (diamonds), the near-IR O I triplet (circles), and the near-UV OH lines (squares). The two triangles at [Fe/H] ∼ −3.6 correspond to the oxygen measurement from OH lines in the metal-poor binary stars CS 22876–032 AB (González Hernández et al. 2008).
    The extreme CNO-enhanced composition of a primitive iron-poor dwarf star

    We present an analysis of high-resolution Keck/HIRES spectroscopic observations of J0815+4729, an extremely carbon-enhanced, iron-poor dwarf star. These high-quality data allow us to derive a metallicity of [Fe/H] = −5.49 ± 0.14 from the three strongest Fe I lines and to measure a high [Ca/Fe] = 0.75 ± 0.14. The large carbon abundance of A(C) = 7.43 ± 0.17 (or [C/Fe] ∼ 4.49 ± 0.11) places this star in the upper boundary of the low- carbon band in the A(C)–[Fe/H] diagram, suggesting no contamination from a binary AGB companion. We detect the oxygen triplet at 777 nm for the first time in an

    Advertised on
  • Stellar mass vs. velocity dispersion relation showing that stellar systems, over 7 orders of magnitude in mass, follow the Virial relation. Small bulges and high redshift red nuggets also follows the relation indicating a common origin.
    Red nuggets at the center of nearby galaxies

    The “Lambda Cold Dark Matter” (CDM) cosmological model is the current theory credited for reproducing the physics responsible for the formation and evolution of large-scale galactic systems in an accelerated expanding universe. In this context, the halos of CDM collapse and convert their energy reaching a state of equilibrium, allowing the formation of galaxies when the matter begins to cool. From an observational point of view, the behaviour of the luminous matter (stars and gas) is very different from that of dark matter. However, there are empirical relationships that reflect the

    Advertised on
  • A diagram of how Rydberg Enhanced Recombination works. Adapted from Nemer et al. (2019).
    Confirming new physics in space

    The interstellar medium is an excellent laboratory to test physical processes that cannot be reproduced in Earth-based laboratories. In this study several nebulae were used as a space laboratory to confirm the existence of an atomic process for which there was no previous experimental confirmation. In 2010, the existence of an atomic process that should occur frequently in astrophysical plasmas throughout the universe was theoretically proposed. The point is that this process — which is termed Rydberg Enhanced Recombination, or RER — had never before been detected, and it’s effectively

    Advertised on