The Whole Sun Project: Untangling the complex physical mechanisms behind our eruptive star and its twins

Description

The Sun is a magnetically active star with violent eruptions that can hit Earth´s magnetosphere and cause important perturbations in our technology-dependent society. The objective of the Whole Sun project is to tackle in a coherent way for the first time key questions in Solar  Physics that involve as a  whole the solar interior and the atmosphere. Our star, the Sun, is a magnetically active celestial body. Its atmosphere undergoes violent eruptions, which are difficult to predict. The largest eruptions, after traversing the interplanetary space, can hit and deform Earth´s magnetosphere and cause important perturbations in our technology-dependent society.

The intense research in solar astrophysics in the past decades has produced important advancement in the knowledge of the solar structure and dynamics. Yet, there remain fundamental questions without a fully satisfactory answer, like: which processes in the interior lead to the generation of the solar magnetic field and why does the Sun have a magnetic activity cycle? What exactly is the mechanism leading to the giant magnetic eruptions seen in its atmosphere? What is the mutual relationship between the interior and the atmosphere? The objective of The Whole Sun project is to tackle these key questions that concern simultaneously the interior and the atmosphere as a coherent whole for the first time.

Until now, the research on the Sun had been carried out through the separate study of its interior, the low atmosphere and the corona, without a global, integrated vision of the complex dynamics that links the plasma in those regions. To understand and provide quantitative explanations for the physical processes in them one has to use advanced concepts of fluid dynamics, electromagnetism, kinetic theory and, additionally for the atmosphere, radiation-matter interaction; one has to apply refined techniques of theoretical and numerical modeling using massively parallel supercomputing installations; one must also carry out and interpret observations acquired in the advanced telescope installations on the ground and in space available at present. The Whole Sun project brings together five European institutions with leading solar physics research groups; we want to attain a deeper understanding of our star by linking the physics of its interior and atmosphere. To achieve that goal, we have to overcome important hurdles like: simultaneous consideration of very different space and time scales; challenging coupling of microphysics effects next to continuum physics and global effects; bringing together and coupling computer codes that were created separately with a specific region in mind. Our goal is to tackle these problems through the development of deep theoretical understanding of our star and the construction of the most advanced solar code of multiple space and time resolution attainable at present.

Principal investigator
Project manager
Project staff

Publications related

No related publications were found.

Talks related

No related talks were found.

Conferences related

No related conferences were found.