Automatic spectral classification of stellar spectra with low signal-to-noise ratio using artificial neural networks

Navarro, S. G.; Corradi, R. L. M.; Mampaso, A.
Bibliographical reference

Astronomy and Astrophysics, Volume 538, id.A76

Advertised on:
2
2012
Number of authors
3
IAC number of authors
3
Citations
28
Refereed citations
22
Description
Context. As part of a project aimed at deriving extinction-distances for thirty-five planetary nebulae, spectra of a few thousand stars were analyzed to determine their spectral type and luminosity class. Aims: We present here the automatic spectral classification process used to classify stellar spectra. This system can be used to classify any other stellar spectra with similar or higher signal-to-noise ratios. Methods: Spectral classification was performed using a system of artificial neural networks that were trained with a set of line-strength indices selected among the spectral lines most sensitive to temperature and the best luminosity tracers. The training and validation processes of the neural networks are discussed and the results of additional validation probes, designed to ensure the accuracy of the spectral classification, are presented. Results: Our system permits the classification of stellar spectra of signal-to-noise ratio (S/N) significantly lower than it is generally considered to be needed. For S/N ≥ 20, a precision generally better than two spectral subtypes is obtained. At S/N < 20, classification is still possible but has a lower precision. Its potential to identify peculiar sources, such as emission-line stars, is also recognized. Based on observations obtained at the 4.2 m WHT telescope of the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofísica de Canarias.
Related projects
Planetary Nebula "The Necklace"
Bipolar Nebulae

This project has three major objectives: 1) To determine the physico-chemical characteristics of bipolar planetary nebulae and symbiotic nebulae, to help understanding the origin of bipolarity and to test theoretical models, mainly models with binary central stars, aimed at explaining the observed morphology and kinematics. 2) To study the low

Antonio
Mampaso Recio