A chromospheric resonance cavity in a sunspot mapped with seismology

Jess, David B.; Snow, Ben; Houston, Scott J.; Botha, Gert J. J.; Fleck, Bernhard; Krishna Prasad, S.; Asensio Ramos, Andrés; Morton, Richard J.; Keys, Peter H.; Jafarzadeh, Shahin; Stangalini, Marco; Grant, Samuel D. T.; Christian, Damian J.
Bibliographical reference

Nature Astronomy

Advertised on:
1
2020
Description
Sunspots are intense collections of magnetic fields that pierce through the Sun's photosphere, with their signatures extending upwards into the outermost extremities of the solar corona1. Cutting-edge observations and simulations are providing insights into the underlying wave generation2, configuration3,4 and damping5 mechanisms found in sunspot atmospheres. However, the in situ amplification of magnetohydrodynamic waves6, rising from a few hundreds of metres per second in the photosphere to several kilometres per second in the chromosphere7, has, until now, proved difficult to explain. Theory predicts that the enhanced umbral wave power found at chromospheric heights may come from the existence of an acoustic resonator8-10, which is created due to the substantial temperature gradients experienced at photospheric and transition region heights11. Here, we provide strong observational evidence of a resonance cavity existing above a highly magnetic sunspot. Through a combination of spectropolarimetric inversions and comparisons with high-resolution numerical simulations, we provide a new seismological approach to mapping the geometry of the inherent temperature stratifications across the diameter of the underlying sunspot, with the upper boundaries of the chromosphere ranging between 1,300 ± 200 km and 2,300 ± 250 km. Our findings will allow the three-dimensional structure of solar active regions to be conclusively determined from relatively commonplace two-dimensional Fourier power spectra. The techniques presented are also readily suitable for investigating temperature-dependent resonance effects in other areas of astrophysics, including the examination of Earth-ionosphere wave cavities12.
Related projects
Project Image
Solar and Stellar Magnetism

Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During

Tobías
Felipe García
Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics

Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the

Tanausú del
Pino Alemán