Cosmological parameter forecasts by a joint 2D tomographic approach to CMB and galaxy clustering

Bermejo-Climent, José Ramón; Ballardini, Mario; Finelli, Fabio; Paoletti, Daniela; Maartens, Roy; Rubiño-Martín, José Alberto; Valenziano, Luca
Bibliographical reference

Physical Review D

Advertised on:
5
2021
Description
The cross-correlation between the cosmic microwave background (CMB) fields and matter tracers carries important cosmological information. In this paper, we forecast by a signal-to-noise ratio analysis the information contained in the cross-correlation of the CMB anisotropy fields with source counts for future cosmological observations and its impact on cosmological parameters uncertainties, using a joint tomographic analysis. We include temperature, polarization, and lensing for the CMB fields and galaxy number counts for the matter tracers. We consider Planck-like, the Simons Observatory, LiteBIRD, and CMB-S4 specifications for CMB, and Euclid-like, Vera C. Rubin Observatory, SPHEREx, EMU, and SKA1 for future galaxy surveys. We restrict ourselves to quasilinear scales in order to deliver results that are free as much as possible from the uncertainties in modeling nonlinearities. We forecast by a Fisher matrix formalism the relative importance of the cross-correlation of source counts with the CMB in the constraints on the parameters for several cosmological models. We obtain that the CMB-number counts cross-correlation can improve the dark energy figure of merit (FOM) at most up to a factor ∼2 for LiteBIRD +CMB -S 4 ×SKA 1 compared to the uncorrelated combination of both probes and will enable the Euclid-like photometric survey to reach the highest FOM among those considered here. We also forecast how CMB-galaxy clustering cross-correlation could increase the FOM of the neutrino sector, also enabling a statistically significant (≳3 σ for LiteBIRD +CMB -S 4 ×SPHERE x ) detection of the minimal neutrino mass allowed in a normal hierarchy by using quasilinear scales only. Analogously, we find that the uncertainty in the local primordial non-Gaussianity could be as low as σ (fNL)∼1.5 - 2 by using two-point statistics only with the combination of CMB and radio surveys, such as EMU and SKA1. Further, we quantify how cross-correlation will help characterizing the galaxy bias. Our results highlight the additional constraining power of the cross-correlation between CMB and galaxy clustering from future surveys, which is mainly based on quasilinear scales and therefore, sufficiently robust to nonlinear effects.
Related projects
Full-sky map showing the spatial distribution of the primary anisotropies of the Cosmic Microwave Background (generated 380,000 years after the Big Bang) derived from observations of the Planck satellite
Anisotropy of the Cosmic Microwave Background

The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present

Rafael
Rebolo López
 The Invisible Scaffolding of Space
Cosmology with Large Scale Structure Probes

The Cosmic Microwave Background (CMB) contains the statistical information about the early seeds of the structure formation in our Universe. Its natural counterpart in the local universe is the distribution of galaxies that arises as a result of gravitational growth of those primordial and small density fluctuations. The characterization of the

FRANCISCO SHU
KITAURA JOYANES