Exploring the tilted accretion disc of AQ Men with TESS

Iłkiewicz, Krystian; Scaringi, Simone; Court, James M. C.; Maccarone, Thomas J.; Altamirano, Diego; Bradshaw, Corey W.; Degenaar, Nathalie; Fratta, Matteo; Littlefield, Colin; Shahbaz, Tariq; Wijnands, Rudy
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
Number of authors
IAC number of authors
Refereed citations
AQ Men is a nova-like variable that is presumed to have a tilted, precessing accretion disc. Grazing eclipses in this system have been speculated to be useful in exploring the geometry of its accretion disc. In this work, we analysed Transiting Exoplanet Survey Satellite (TESS) observations of AQ Men, which provide the best light curve of this object thus far. We show that the depths of the eclipses are changing with the orientation of the accretion disc, which means that they can serve as a direct test of the tilted accretion disc models. The precession period of the accretion disc is increasing during the TESS observations. However, it is still shorter than the period determined in the previous studies. The amplitude of the variability related to the precession of the accretion disc varies, and so does the shape of this variability. Moreover, we have detected a positive superhump that was previously unseen in AQ Men. Interestingly, the positive superhump has a strongly non-sinusoidal shape, which is not expected for a nova-like variable.
Related projects
Representación de la variable cataclísmica SS Cygni (Chris Moran)
Binary Stars
The study of binary stars is essential to stellar astrophysics. A large number of stars form and evolve within binary systems. Therefore, their study is fundamental to understand stellar and galactic evolution. Particularly relevant is that binary systems are still the best source of precise stellar mass and radius measurements. Research lines
Rodríguez Gil
Black hole in outburst
Black holes, neutron stars, white dwarfs and their local environment
Accreting black-holes and neutron stars in X-ray binaries provide an ideal laboratory for exploring the physics of compact objects, yielding not only confirmation of the existence of stellar mass black holes via dynamical mass measurements, but also the best opportunity for probing high-gravity environments and the physics of accretion; the most
Armas Padilla