Limitations of the Ca II 8542 Å Line for the Determination of Magnetic Field Oscillations

Felipe, Tobias; Socas Navarro, Hector; Sangeetha, C. R.; Milic, Ivan
Bibliographical reference

The Astrophysical Journal

Advertised on:
Chromospheric umbral oscillations produce periodic brightenings in the core of some spectral lines, known as umbral flashes. They are also accompanied by fluctuations in velocity, temperature, and, according to several recent works, magnetic field. In this study, we aim to ascertain the accuracy of the magnetic field determined from inversions of the Ca II 8542 Å line. We have developed numerical simulations of wave propagation in a sunspot umbra. Synthetic Stokes profiles emerging from the simulated atmosphere were computed and then inverted using the NICOLE code. The atmospheres inferred from the inversions have been compared with the original parameters from the simulations. Our results show that the inferred chromospheric fluctuations in velocity and temperature match the known oscillations from the numerical simulation. In contrast, the vertical magnetic field obtained from the inversions exhibits an oscillatory pattern with a ~300 G peak-to-peak amplitude, which is absent in the simulation. We have assessed the error in the inferred parameters by performing numerous inversions with slightly different configurations of the same Stokes profiles. We find that when the atmosphere is approximately at rest, the inversion tends to favor solutions that underestimate the vertical magnetic field strength. On the contrary, during umbral flashes, the values inferred from most of the inversions are concentrated at stronger fields than those from the simulation. Our analysis provides a quantification of the errors associated with the inversions of the Ca II 8542 Å line and suggests caution with the interpretation of the inferred magnetic field fluctuations.
Related projects
Project Image
Solar and Stellar Magnetism

Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During

Felipe García
Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics

Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the

Tanausú del
Pino Alemán