Metallicity and α-Element Abundance Gradients along the Sagittarius Stream as Seen by APOGEE

Hayes, Christian R.; Majewski, Steven R.; Hasselquist, Sten; Anguiano, Borja; Shetrone, Matthew; Law, David R.; Schiavon, Ricardo P.; Cunha, Katia; Smith, Verne V.; Beaton, Rachael L.; Price-Whelan, Adrian M.; Allende Prieto, C.; Battaglia, G.; Bizyaev, Dmitry; Brownstein, Joel R.; Cohen, Roger E.; Frinchaboy, Peter M.; García-Hernández, D. A.; Lacerna, Ivan; Lane, Richard R.; Mészáros, Szabolcs; Bidin, Christian Moni; Mũnoz, Ricardo R.; Nidever, David L.; Oravetz, Audrey; Oravetz, Daniel; Pan, Kaike; Roman-Lopes, Alexandre; Sobeck, Jennifer; Stringfellow, Guy
Bibliographical reference

The Astrophysical Journal

Advertised on:
1
2020
Number of authors
30
IAC number of authors
3
Citations
53
Refereed citations
51
Description
Using 3D positions and kinematics of stars relative to the Sagittarius (Sgr) orbital plane and angular momentum, we identify 166 Sgr stream members observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) that also have Gaia DR2 astrometry. This sample of 63/103 stars in the Sgr trailing/leading arm is combined with an APOGEE sample of 710 members of the Sgr dwarf spheroidal core (385 of them newly presented here) to establish differences of 0.6 dex in median metallicity and 0.1 dex in [α/Fe] between our Sgr core and dynamically older stream samples. Mild chemical gradients are found internally along each arm, but these steepen when anchored by core stars. With a model of Sgr tidal disruption providing estimated dynamical ages (i.e., stripping times) for each stream star, we find a mean metallicity gradient of 0.12 ± 0.03 dex Gyr−1 for stars stripped from Sgr over time. For the first time, an [α/Fe] gradient is also measured within the stream, at 0.02 ± 0.01 dex Gyr−1 using magnesium abundances and at 0.04 ± 0.01 dex Gyr−1 using silicon, which imply that the Sgr progenitor had significant radial abundance gradients. We discuss the magnitude of those inferred gradients and their implication for the nature of the Sgr progenitor within the context of the current family of Milky Way satellite galaxies, and we suggest that more sophisticated Sgr models are needed to properly interpret the growing chemodynamical detail we have on the Sgr system.
Related projects
A view of our Milky Way galaxy with its close neighbors the Magellanic Clouds
Galaxy Evolution in the Local Group

Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy

Matteo
Monelli
Project Image
Nucleosynthesis and molecular processes in the late stages of Stellar Evolution

Low- to intermediate-mass (M < 8 solar masses, Ms) stars represent the majority of stars in the Cosmos. They finish their lives on the Asymptotic Giant Branch (AGB) - just before they form planetary nebulae (PNe) - where they experience complex nucleosynthetic and molecular processes. AGB stars are important contributors to the enrichment of the

Domingo Aníbal
García Hernández
spectrum of mercury lamp
Chemical Abundances in Stars

Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to

Carlos
Allende Prieto