Neutron-capture element abundances in the planetary nebula NGC 5315 from deep optical and near-infrared spectrophotometry★†

Madonna, S.; García-Rojas, J.; Sterling, N. C.; Delgado-Inglada, G.; Mesa-Delgado, A.; Luridiana, V.; Roederer, I. U.; Mashburn, A. L.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 471, Issue 2, p.1341-1369

Advertised on:
10
2017
Number of authors
8
IAC number of authors
3
Citations
12
Refereed citations
11
Description
We analyse the chemical composition of the planetary nebula (PN) NGC 5315, through high-resolution (R ∼ 40000) optical spectroscopy with Ultraviolet-Visual Echelle Spectrograph at the Very Large Telescope, and medium-resolution (R ∼ 4800) near-infrared spectroscopy with Folded-port InfraRed Echellette at Magellan Baade Telescope, covering a wide spectral range from 0.31 to 2.50 μm. The main aim of this work is to investigate neutron (n)-capture element abundances to study the operation of the slow n-capture ('s-process') in the asymptotic giant branch (AGB) progenitor of NGC 5315. We detect more than 700 emission lines, including ions of the n-capture elements Se, Kr, Xe and possibly Br. We compute physical conditions from a large number of diagnostic line ratios, and derive ionic abundances for species with available atomic data. The total abundances are computed using recent ionization correction factors (ICFs) or by summing ionic abundances. Total abundances of common elements are in good agreement with previous work on this object. Based on our abundance analysis of NGC 5315, including the lack of s-process enrichment, we speculate that the most probable evolutionary scenario is that the progenitor star is in a binary system as hinted at by radial velocity studies, and interactions with its companion truncated the AGB before s-process enrichment could occur. However there are other two possible scenarios for its evolution, that cannot be ruled out: (i) the progenitor is a low-mass single star that did not undergo third dredge-up; (ii) the progenitor star of NGC 5315 had an initial mass of 3-5 M⊙, and any s-process enhancements were heavily diluted by the massive envelope during the AGB phase.
Related projects
Izquierda - Imagen RGB de la nebulosa de Orión y M43 obtenida filtros estrechos con la cámara WFC en el INT: H alfa (rojo), [S II] 6716+30 (verde), [O III] 5007 (azul). Derecha - Imagen en falso color de la nebulosa planetaria NGC 6778. En azul se ve la emisión en la línea de O II tomada con el filtro sintonizable azul del instrumento OSIRIS en el GTC; en verde imagen con el filtro estrecho de [O III] del Nordic Optical Telescope (NOT).
Physics of Ionized Nebulae

The research that is being carried out by the group can be condensed into two main lines: 1) Study of the structure, dynamics, physical conditions and chemical evolution of Galactic and extragalactic ionized nebulae through detailed analysis and modelization of their spectra. Investigation of chemical composition gradients along the disk of our

Jorge
García Rojas