A probabilistic deep learning model to distinguish cusps and cores in dwarf galaxies

Expósito-Márquez, J.; Brook, C. B.; Huertas-Company, M.; Di Cintio, A.; Macciò, A. V.; Grand, R. J. J.; Battaglia, G.; Arjona-Gálvez, E.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
Number of authors
IAC number of authors
Refereed citations
Numerical simulations within a cold dark matter (DM) cosmology form haloes whose density profiles have a steep inner slope ('cusp'), yet observations of galaxies often point towards a flat central 'core'. We develop a convolutional mixture density neural network model to derive a probability density function (PDF) of the inner density slopes of DM haloes. We train the network on simulated dwarf galaxies from the NIHAO and AURIGA projects, which include both DM cusps and cores: line-of-sight velocities and 2D spatial distributions of their stars are used as inputs to obtain a PDF representing the probability of predicting a specific inner slope. The model recovers accurately the expected DM profiles: $\sim 82{{\ \rm per\ cent}}$ of the galaxies have a derived inner slope within ±0.1 of their true value, while $\sim 98{{\ \rm per\ cent}}$ within ±0.3. We apply our model to four Local Group dwarf spheroidal galaxies and find results consistent with those obtained with the Jeans modelling based code GRAVSPHERE: the Fornax dSph has a strong indication of possessing a central DM core, Carina and Sextans have cusps (although the latter with large uncertainties), while Sculptor shows a double peaked PDF indicating that a cusp is preferred, but a core cannot be ruled out. Our results show that simulation-based inference with neural networks provide a innovative and complementary method for the determination of the inner matter density profiles in galaxies, which in turn can help constrain the properties of the elusive DM.
Related projects
A view of our Milky Way galaxy with its close neighbors the Magellanic Clouds
Galaxy Evolution in the Local Group

Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy

Project Image
Numerical Astrophysics: Galaxy Formation and Evolution

How galaxies formed and evolved through cosmic time is one of the key questions of modern astronomy and astrophysics. Cosmological time- and length-scales are so large that the evolution of individual galaxies cannot be directly observed. Only through numerical simulations can one follow the emergence of cosmic structures within the current

Dalla Vecchia