Probing Uncertainties in Diagnostics of a Synthetic Chromosphere

Schmit, Don; Martinez-Sykora, Juan; Pereira, Tiago; Asensio Ramos, Andrés
Bibliographical reference

The Astrophysical Journal

Advertised on:
5
2021
Description
Effective spectroscopic diagnostics rely on the ability to convert a particular flux measurement into a physical interpretation. Knowledge of uncertainty is a central component of diagnostics. We present data from a simulated solar-like chromosphere, where we have addressed the question of whether degeneracy is a problem in mapping from a non-LTE chromospheric line profile to a particular vertical stratification of atmospheric properties along the line of sight. Our results indicate that stratification degeneracies do exist, at least in our simulated atmosphere. We quantify this effect through the creation of posterior densities for atmospheric properties based on the Mg II h line profile using the approximate Bayesian computation (ABC) technique. We find that the predictive power of the ABC temperature posterior systematically varies as a function of atmospheric column mass and ground-truth temperature. The ABC posteriors more effectively reproduce the spectral intensity in the Ca II 8542 Å line than they do temperature stratification, although residual error in the Ca II line core is common. Our results illustrate that some degeneracies should be alleviated through simultaneous analysis of multiple chromospheric lines.
Related projects
Project Image
Solar and Stellar Magnetism

Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During

Tobías
Felipe García
Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics

Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the

Tanausú del
Pino Alemán