Rayleigh-Taylor instabilities with sheared magnetic fields in partially ionised plasmas

Ruderman, M. S.; Ballai, I.; Khomenko, E.; Collados, M.
Bibliographical reference

Astronomy & Astrophysics, Volume 609, id.A23, 11 pp.

Advertised on:
1
2018
Description
Aims: In the present study we investigate the nature of the magnetic Rayleigh-Taylor instability appearing at a tangential discontinuity in a partially ionised plasma when the effect of magnetic shear is taken into account. Methods: The partially ionised character of the plasma is described by the ambipolar diffusion in the induction equation. The dynamics of the plasma is investigated in a single-fluid approximation. After matching the solutions on both sides of the interface we derive a dispersion equation and calculate the instability increment using analytical methods for particular cases of parameters, and numerical investigation for a wide range of parameters. Results: We calculated the dependence of the instability increment on the perturbation wavenumber. We also calculated the dependence of the maximum instability increment on the shear angle of the magnetic field for various values of the ionisation degree. Conclusions: Our results show that the Rayleigh-Taylor instability becomes sensitive to the degree of plasma ionisation only for plasmas with small values of plasma beta and in a very weakly ionised state. Perturbations are unstable only for those wavenumbers that are below a cut-off value.
Related projects
Solar Eruption
Numerical Simulation of Astrophysical Processes

The general aim of this project is the investigation of astrophysical processes through the use of state­of­the­art numerical codes on massively parallel computers. More specifically, the research in many astrophysical fields requires an understanding of gas dynamical, magnetic, radiative transfer and gravitational phenomena not accessible to

Project Image
Solar and Stellar Magnetism

Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During

Tobías
Felipe García
Project Image
Solar and Stellar Magnetism

Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During

Tobías
Felipe García