Simultaneous modelling of matter power spectrum and bispectrum in the presence of baryons

Aricò, Giovanni; Angulo, Raul E.; Hernández-Monteagudo, Carlos; Contreras, Sergio; Zennaro, Matteo
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
Number of authors
IAC number of authors
Refereed citations
We demonstrate that baryonification algorithms, which displace particles in gravity-only simulations according to physically motivated prescriptions, can simultaneously capture the impact of baryonic physics on the two and three-point statistics of matter. Specifically, we show that our implementation of a baryonification algorithm jointly fits the changes induced by baryons on the power spectrum and equilateral bispectrum on scales up to $k = 5\rm h\, {\rm Mpc}^{-1}$ and redshifts 0 ≤ z ≤ 2, as measured in six different cosmological hydrodynamical simulations. The accuracy of our fits is typically $\sim 1{{\ \rm per\ cent}}$ for the power spectrum, and for the equilateral and squeezed bispectra, which somewhat degrades to $\sim 3{{\ \rm per\ cent}}$ for simulations with extreme feedback prescriptions. Our results support the physical assumptions underlying baryonification approaches and encourage their use in interpreting weak gravitational lensing and other cosmological observables.
Related projects
 The Invisible Scaffolding of Space
Cosmology with Large Scale Structure Probes

The Cosmic Microwave Background (CMB) contains the statistical information about the early seeds of the structure formation in our Universe. Its natural counterpart in the local universe is the distribution of galaxies that arises as a result of gravitational growth of those primordial and small density fluctuations. The characterization of the