STEPAR: an automatic code to infer stellar atmospheric parameters

Tabernero, H. M.; Marfil, E.; Montes, D.; González Hernández, J. I.
Bibliographical reference

Astronomy & Astrophysics, Volume 628, id.A131, 12 pp.

Advertised on:
8
2019
Description
Context. STEPAR is an automatic code written in Python 3.X designed to compute the stellar atmospheric parameters Teff, log g, [Fe/H], and ξ of FGK-type stars by means of the equivalent width (EW) method. This code has already been extensively tested in different spectroscopic studies of FGK-type stars with several spectrographs and against thousands of Gaia-ESO Survey UVES U580 spectra of late-type, low-mass stars as one of its 13 pipelines. Aims: We describe the code that we tested against a library of well characterised Gaia benchmark stars. We also release the code to the community and provide the link for download. Methods: We carried out the required EW determination of Fe I and Fe II spectral lines using the automatic tool TAME. STEPAR implements a grid of MARCS model atmospheres and the MOOG radiative transfer code to compute stellar atmospheric parameters by means of a Downhill Simplex minimisation algorithm. Results: We show the results of the benchmark star test and also discuss the limitations of the EW method, and hence the code. In addition, we find a small internal scatter for the benchmark stars of 9 ± 32 K in Teff, 0.00 ± 0.07 dex in log g, and 0.00 ± 0.03 dex in [Fe/H]. Finally, we advise against using STEPAR on double-lined spectroscopic binaries or spectra with R < 30 000, S/N < 20, or v sin i > 15 km s-1, and on stars later than K4 or earlier than F6.
Related projects
Project Image
Observational Tests of the Processes of Nucleosynthesis in the Universe

Several spectroscopic analyses of stars with planets have recently been carried out. One of the most remarkable results is that planet-harbouring stars are on average more metal-rich than solar-type disc stars. Two main explanations have been suggested to link this metallicity excess with the presence of planets. The first of these, the “self

Garik
Israelyan Shatinyan
ARES: High Spectral Resolution
ARES: High Spectral Resolution

ARES (High Spectral Resolution) is a coordinated project which attempt to join and consolidate the efforts on instrument developments at high spectral resolution within the IAC. The goal is to launch the scientific programs that the IAC carries out on the search and characterization of exoplanets, in particular Earth-like exoplanets, on the

Jonay Isai
González Hernández