TOI-1130: A photodynamical analysis of a hot Jupiter in resonance with an inner low-mass planet

Korth, J.; Gandolfi, D.; Šubjak, J.; Howard, S.; Ataiee, S.; Collins, K. A.; Quinn, S. N.; Mustill, A. J.; Guillot, T.; Lodieu, N.; Smith, A. M. S.; Esposito, M.; Rodler, F.; Muresan, A.; Abe, L.; Albrecht, S. H.; Alqasim, A.; Barkaoui, K.; Beck, P. G.; Burke, C. J.; Butler, R. P.; Conti, D. M.; Collins, K. I.; Crane, J. D.; Dai, F.; Deeg, H. J.; Evans, P.; Grziwa, S.; Hatzes, A. P.; Hirano, T.; Horne, K.; Huang, C. X.; Jenkins, J. M.; Kabáth, P.; Kielkopf, J. F.; Knudstrup, E.; Latham, D. W.; Livingston, J.; Luque, R.; Mathur, S.; Murgas, F.; Osborne, H. L. M.; Palle, E.; Persson, C. M.; Rodriguez, J. E.; Rose, M.; Rowden, P.; Schwarz, R. P.; Seager, S.; Serrano, L. M.; Sha, L.; Shectman, S. A.; Shporer, A.; Srdoc, G.; Stockdale, C.; Tan, T. -G.; Teske, J. K.; Van Eylen, V.; Vanderburg, A.; Vanderspek, R.; Wang, S. X.; Winn, J. N.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
Number of authors
IAC number of authors
Refereed citations
The TOI-1130 is a known planetary system around a K-dwarf consisting of a gas giant planet, TOI-1130 c on an 8.4-day orbit that is accompanied by an inner Neptune-sized planet, TOI-1130 b, with an orbital period of 4.1 days. We collected precise radial velocity (RV) measurements of TOI-1130 with the HARPS and PFS spectrographs as part of our ongoing RV follow-up program. We performed a photodynamical modeling of the HARPS and PFS RVs, along with transit photometry from the Transiting Exoplanet Survey Satellite (TESS) and the TESS Follow-up Observing Program (TFOP). We determined the planet masses and radii of TOI-1130 b and TOI-1130 c to be Mb = 19.28 ± 0.97M⊕ and Rb = 3.56 ± 0.13 R⊕, and Mc = 325.59 ± 5.59M⊕ and Rc = 13.32−1.41+1.55 R⊕, respectively. We have spectroscopically confirmed the existence of TOI-1130 b, which had previously only been validated. We find that the two planets have orbits with small eccentricities in a 2:1 resonant configuration. This is the first known system with a hot Jupiter and an inner lower mass planet locked in a mean-motion resonance. TOI-1130 belongs to the small, yet growing population of hot Jupiters with an inner low-mass planet that poses a challenge to the pathway scenario for hot Jupiter formation. We also detected a linear RV trend that is possibly due to the presence of an outer massive companion.

Based on observations made with ESO 3.6-m telescope at La Silla Observatory under programme IDs 1102.C-0923 and 60.A-9709. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

Related projects
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search
The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Pallé Bago
Discovery of a system of super-Earths orbiting the star HD 176986 with about 5.7 and 9.2 Earth masses.
Very Low Mass Stars, Brown Dwarfs and Planets
Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so
Rebolo López