The Transiting Multi-planet System HD15337: Two Nearly Equal-mass Planets Straddling the Radius Gap

Gandolfi, Davide; Fossati, Luca; Livingston, John H.; Stassun, Keivan G.; Grziwa, Sascha; Barragán, Oscar; Fridlund, Malcolm; Kubyshkina, Daria; Persson, Carina M.; Dai, Fei; Lam, Kristine W. F.; Albrecht, Simon; Batalha, Natalie; Beck, Paul G.; Justesen, Anders Bo; Cabrera, Juan; Cartwright, Scott; Cochran, William D.; Csizmadia, Szilard; Davies, Misty D.; Deeg, Hans J.; Eigmüller, Philipp; Endl, Michael; Erikson, Anders; Esposito, Massimiliano; García, Rafael A.; Goeke, Robert; González-Cuesta, Lucía; Guenther, Eike W.; Hatzes, Artie P.; Hidalgo, Diego; Hirano, Teruyuki; Hjorth, Maria; Kabath, Petr; Knudstrup, Emil; Korth, Judith; Li, Jie; Luque, Rafael; Mathur, Savita; Montañes Rodríguez, Pilar; Narita, Norio; Nespral, David; Niraula, Prajwal; Nowak, Grzegorz; Palle, Enric; Pätzold, Martin; Prieto-Arranz, Jorge; Rauer, Heike; Redfield, Seth; Ribas, Ignasi; Skarka, Marek; Smith, Alexis M. S.; Rowden, Pamela; Torres, Guillermo; Van Eylen, Vincent; Vezie, Michael L.
Bibliographical reference

The Astrophysical Journal Letters, Volume 876, Issue 2, article id. L24, 12 pp. (2019).

Advertised on:
5
2019
Number of authors
56
IAC number of authors
12
Citations
33
Refereed citations
29
Description
We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402, TIC 120896927), a bright (V = 9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in Sectors 3 and 4. We combine the TESS photometry with archival High Accuracy Radial velocity Planet Searcher spectra to confirm the planetary nature of the transit signals and derive the masses of the two transiting planets. With an orbital period of 4.8 days, a mass of {7.51}-1.01+1.09 {M}\oplus and a radius of 1.64 ± 0.06 R ⊕, HD 15337 b joins the growing group of short-period super-Earths known to have a rocky terrestrial composition. The sub-Neptune HD 15337 c has an orbital period of 17.2 days, a mass of {8.11}-1.69+1.82 {{{M}}}\oplus , and a radius of 2.39 ± 0.12 R ⊕, suggesting that the planet might be surrounded by a thick atmospheric envelope. The two planets have similar masses and lie on opposite sides of the radius gap, and are thus an excellent testbed for planet formation and evolution theories. Assuming that HD 15337 c hosts a hydrogen-dominated envelope, we employ a recently developed planet atmospheric evolution algorithm in a Bayesian framework to estimate the history of the high-energy (extreme ultraviolet and X-ray) emission of the host star. We find that at an age of 150 Myr, the star possessed on average between 3.7 and 127 times the high-energy luminosity of the current Sun.
Related projects
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search

The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary

Savita
Mathur
Projects' name image
Exoplanets and Astrobiology

The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable

Enric
Pallé Bago
Projects' name image
Exoplanets and Astrobiology

The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable

Enric
Pallé Bago