Unnoticed Magnetic Field Oscillations in the Very Quiet Sun Revealed by SUNRISE/IMaX

Martínez-González, M. J.; Asensio-Ramos, A.; Manso-Sainz, R.; Khomenko, E.; Martínez-Pillet, V.; Solanki, S. K.; López Ariste, A.; Schmidt, W.; Barthol, P.; Gandorfer, A.
Bibliographical reference

The Astrophysical Journal Letters, Volume 730, Issue 2, article id. L37 (2011).

Advertised on:
We present observational evidence for oscillations of magnetic flux density in the quiet areas of the Sun. The majority of magnetic fields on the solar surface have strengths of the order of or lower than the equipartition field (300-500 G). This results in a myriad of magnetic fields whose evolution is largely determined by the turbulent plasma motions. When granules evolve they squash the magnetic field lines together or pull them apart. Here, we report on the periodic deformation of the shapes of features in circular polarization observed at high resolution with SUNRISE. In particular, we note that the area of patches with a constant magnetic flux oscillates with time, which implies that the apparent magnetic field intensity oscillates in antiphase. The periods associated with this oscillatory pattern are compatible with the granular lifetime and change abruptly, which suggests that these oscillations might not correspond to characteristic oscillatory modes of magnetic structures, but to the forcing by granular motions. In one particular case, we find three patches around the same granule oscillating in phase, which means that the spatial coherence of these oscillations can reach 1600 km. Interestingly, the same kind of oscillatory phenomenon is also found in the upper photosphere.
Related projects
Solar Eruption
Numerical Simulation of Astrophysical Processes

The general aim of this project is the investigation of astrophysical processes through the use of state­of­the­art numerical codes on massively parallel computers. More specifically, the research in many astrophysical fields requires an understanding of gas dynamical, magnetic, radiative transfer and gravitational phenomena not accessible to

Project Image
Solar and Stellar Magnetism

Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During

Felipe García
Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics

Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the

Tanausú del
Pino Alemán