Severo Ochoa Programme

Research News

  • Omaira González Martín

    For astronomers one of the biggest obstacles is the darkness of the Universe itself, above all the darkness caused by the gas and dust which surround active galactic nuclei, or AGN. These nuclei emit a huge quantity of energy produced by the supermassive black hole onto which matter falls at a considerable rate. The accretion processes are fundamental for the evolution of active galaxies. However these nuclei often remain hidden by the dusty structures, called tori, which surround the central black hole. Studyuing the properties of this circumnuclear dust, the accretion processes, and

    Advertised on
  • Spectral energy distribution (in white; best theoretical fit in blue) of an extremely red old star. The photometric data from Spitzer's IRAC and MIPS instruments are represented in purple. Credits: Dell'Agli et al. (2021) with  background infrared image of the Large Magellanic Cloud, NASA/JPL-Caltech/Meixner(STSCI) and the Sage Legacy Team.

    Modelling dust formation in single stars evolving through the carbon-star stage of the asymptotic giant branch (AGB) (i.e., the late evolutionary stages of Sun-like stars) reproduces reasonably well the mid-infrared colours and magnitudes of most of the C-rich sources in low-metallicity galaxies with known distances like the Large Magellanic Cloud (LMC). The only exception to this is a small subset of extremely red objects (EROs). An analysis of the spectral energy distributions of EROs suggests the presence of large quantities of dust, which demand gas densities in the outflow significantly

    Advertised on
  • High-resolution images of the bright boulders (arrows) during Hayabusa2 proximity operations. Especially, the images obtained during the first touchdown operation (a-c) show much smaller bright fragments in regolith everywhere (adapted from Fig.1 in Tatsumi et al. 2021).

    Hayabusa2’s optical navigation camera (ONC) found many anomalously bright boulders on the dark surface of the carbonaceous (or C-type) asteroid Ryugu. Observations with ONC and the near-infrared spectrometer (NIRS3) indicates that at least six of those bright boulders exhibit reflectance spectra consistent with exogenous origin; their spectra are similar to rocky (or S-type) asteroids. This means that the bright boulders resulted from collisional mixing between Ryugu’s parent body and S-type asteroid(s). On Bennu, the asteroid explored by NASA’s OSIRIS-REx, bright boulders with spectra

    Advertised on
  • TOI-178

    An international collaboration in which researchers from the Instituto de Astrofísica de Canarias take part, has discovered a unique planetary system made up of six exolplanets, of which five perform an unusual rhythmic dance, while they orbit their star. Even so, the sizes and masses of the planets are not in any ordered pattern. This finding, which is published today in the journal Astronomy & Astrophyisics, poses a challenge to current theories of planet formation.

    Advertised on
  • Distribution of dark matter and its tracers (halos). Credit: Gabriel Pérez Díaz, SMM (IAC).

    The group of Cosmology and Large Scale Structure at the Instituto de Astrofísica de Canarias (IAC) has developed, using the BAM (Bias Assignment Method) numerical computer code, a novel strategy to generate precise synthetic catalogues of galaxies to reproduce the observations of the census of galaxies, which will help to yield valuable cosmological information and to elucidate the nature of dark energy.

    Advertised on
  • Heavy-element abundance pattern for a P-rich star (blue stars), together with the abundances of stars representative of the s- (CH; red),  i- (CEMP-i; magenta), and r- (EMP-r; green) neutron capture processes. The P-rich stars heavy-element pattern is more similar to the CH stars or the s-process.

    The recently discovered phosphorus-rich stars pose a challenge to stellar evolution and nucleosynthesis (that is, the formation of chemical elements in stellar interiors) theory, as none of the existing models can explain their extremely peculiar chemical abundances pattern. Apart from the large phosphorus (P) enhancement, such stars also show enhancement in other light (O, Mg, Si, Al) and heavy (e.g., Ce) elements. Thanks to the Spanish Service Time at the Nordic Optical Telescope, we have recently obtained high-resolution optical spectra of two optically bright phosphorus-rich stars

    Advertised on