Physical properties of a sunspot chromosphere with umbral flashes

de la Cruz Rodríguez, J.; Rouppe van der Voort, L.; Socas-Navarro, H.; van Noort, M.
Bibliographical reference

Astronomy and Astrophysics, Volume 556, id.A115, 15 pp.

Advertised on:
8
2013
Number of authors
4
IAC number of authors
1
Citations
103
Refereed citations
95
Description
We present new high-resolution spectro-polarimetric Ca IIλ8542 observations of umbral flashes in sunspots. At nearly 0.18 arcsec, and spanning about one hour of continuous observation, this is the most detailed dataset published thus far. Our study involves both LTE and non-LTE inversions (but includes also a weak field analysis as a sanity check) to quantify temperatures, mass flows and the full magnetic field vector geometry. We confirm earlier reports that UFs have very fine structure with hot and cool material intermixed at sub-arcsecond scales. The shock front is roughly 1000 K hotter than the surrounding material. We do not observe significant fluctuations of the field in the umbra. In the penumbra, however, the passage of the running penumbral waves alter the magnetic field strength by some 200 G (peak-to-peak amplitude) but it does not change the field orientation (at least not significantly within our sensitivity of a few degrees). From a fast Fourier transform analysis, we find a trend of decreasing power at high temporal frequencies at those locations with more horizontal magnetic fields, for the line-of-sight velocity and magnetic field strength. In the outer penumbra we find an absence of high frequency power while there is increasingly more power at high frequencies towards the umbra. Movie and Appendices A and B are available in electronic form at http://www.aanda.org
Related projects
Solar Eruption
Numerical Simulation of Astrophysical Processes
Numerical simulation through complex computer codes has been a fundamental tool in physics and technology research for decades. The rapid growth of computing capabilities, coupled with significant advances in numerical mathematics, has made this branch of research accessible to medium-sized research centers, bridging the gap between theoretical and
Daniel Elías
Nóbrega Siverio
Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics
Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the
Tanausú del
Pino Alemán