Spectropolarimetric analysis of an active region filament. I. Magnetic and dynamical properties from single component inversions

Díaz Baso, C. J.; Martínez González, M. J.; Asensio Ramos, A.
Bibliographical reference

Astronomy and Astrophysics, Volume 625, id.A128, 18 pp.

Advertised on:
5
2019
Number of authors
3
IAC number of authors
3
Citations
17
Refereed citations
15
Description
Aims: The determination of the magnetic filed vector in solar filaments is made possible by interpreting the Hanle and Zeeman effects in suitable chromospheric spectral lines like those of the He I multiplet at 10 830 Å. We study the vector magnetic field of an active region filament (NOAA 12087). Methods: Spectropolarimetric data of this active region was acquired with the GRIS instrument at the GREGOR telescope and studied simultaneously in the chromosphere with the He I 10 830 Å multiplet and in the photosphere Si I 10 827 Å line. As has been done in previous studies, only a single-component model was used to infer the magnetic properties of the filament. The results are put into a solar context with the help of the Solar Dynamic Observatory images. Results: Some results clearly point out that a more complex inversion had to be performed. First, the Stokes V map of He I does not show a clear signature of the presence of the filament. Second, the local azimuth map follows the same pattern as Stokes V; it appears that polarity of Stokes V is conditioning the inference to very different magnetic fields even with similar linear polarization signals. This indication suggests that the Stokes V could be dominated from below by the magnetic field coming from the active region, and not from the filament itself. This evidence, and others, will be analyzed in depth and a more complex inversion will be attempted in the second part of this series.
Related projects
Project Image
Solar and Stellar Magnetism

Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During

Tobías
Felipe García
Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics

Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the

Tanausú del
Pino Alemán